数据处理和分析之关联规则学习:Eclat算法在推荐系统中的应用
数据处理和分析之关联规则学习:Eclat算法
简介
关联规则学习概述
关联规则学习是数据挖掘中的一种方法,用于发现数据集中项之间的有趣关系或相关性。在零售业、市场篮子分析、推荐系统等领域,关联规则学习被广泛应用,以识别哪些商品经常一起被购买,从而优化商品布局或推荐策略。关联规则通常表示为“如果A,则B”,其中A和B是数据集中的项集。
关联规则学习的关键概念包括:
- 支持度(Support):一个项集在数据集中出现的频率。
- 置信度(Confidence):规则“如果A,则B”的可信度,即在A出现的情况下B出现的概率。
- 提升度(Lift)&#