数据处理和分析之关联规则学习:Eclat算法在推荐系统中的应用

数据处理和分析之关联规则学习:Eclat算法在推荐系统中的应用

在这里插入图片描述

数据处理和分析之关联规则学习:Eclat算法

简介

关联规则学习概述

关联规则学习是数据挖掘中的一种方法,用于发现数据集中项之间的有趣关系或相关性。在零售业、市场篮子分析、推荐系统等领域,关联规则学习被广泛应用,以识别哪些商品经常一起被购买,从而优化商品布局或推荐策略。关联规则通常表示为“如果A,则B”,其中A和B是数据集中的项集。

关联规则学习的关键概念包括:

  • 支持度(Support):一个项集在数据集中出现的频率。
  • 置信度(Confidence):规则“如果A,则B”的可信度,即在A出现的情况下B出现的概率。
  • 提升度(Lift)&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值