数据处理和分析之数据预处理:异常值处理(Outlier Detection):异常值对数据分布的影响分析
数据预处理的重要性
异常值的基本概念
在数据科学中,异常值(Outliers)是指数据集中显著偏离其他观测值的数值。这些数值可能由于测量错误、数据录入错误、实验异常或其他非典型因素产生。异常值的存在可以对数据的统计特性、模型的训练结果以及数据分析的结论产生重大影响。
异常值的类型
异常值主要分为两种类型:
- 点异常值(Point Outliers):单个数据点显著偏离数据集的其他点。
- 上下文异常值(Contextual Outliers):在特定上下文中显著偏离的数据点,但在其他上下文中可能正常。
异常值检测方法
常见的异常值检测方法包括&#x