数据处理和分析之数据预处理:异常值处理(Outlier Detection):异常值对数据分布的影响分析

数据处理和分析之数据预处理:异常值处理(Outlier Detection):异常值对数据分布的影响分析

在这里插入图片描述

数据预处理的重要性

异常值的基本概念

在数据科学中,异常值(Outliers)是指数据集中显著偏离其他观测值的数值。这些数值可能由于测量错误、数据录入错误、实验异常或其他非典型因素产生。异常值的存在可以对数据的统计特性、模型的训练结果以及数据分析的结论产生重大影响。

异常值的类型

异常值主要分为两种类型:

  1. 点异常值(Point Outliers):单个数据点显著偏离数据集的其他点。
  2. 上下文异常值(Contextual Outliers):在特定上下文中显著偏离的数据点,但在其他上下文中可能正常。

异常值检测方法

常见的异常值检测方法包括&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值