Test软件:Keysight二次开发_(6).仪器控制与通信

仪器控制与通信

在测试软件开发中,仪器控制与通信是一个核心模块,它负责与各种测试仪器进行数据交互,实现自动化测试流程。本节将详细介绍如何使用Python和Keysight的仪器控制库(如PyVISA)来实现与Keysight仪器的通信,并提供具体的代码示例。

在这里插入图片描述

1. 仪器通信基础

仪器通信的基础是通过各种接口(如GPIB、USB、以太网等)与测试仪器进行数据交换。在Keysight的测试仪器中,常用的接口有GPIB、USB、以太网和RS-232。为了简化通信过程,Keysight提供了标准化的通信协议和库,如SCPI(Standard Commands for Programmable Instruments)和PyVISA(Python VISA Library)。

1.1 SCPI命令

SCPI命令是一种标准化的命令集,用于控制和查询测试仪器。SCPI命令通常以字符串形式发送,例如:

  • *IDN?:查询仪器的标识信息。

  • SYST:ERR?:查询仪器的错误信息。

  • MEAS:VOLT?:测量电压。

1.2 PyVISA库

PyVISA是一个Python库,用于与支持VISA(Virtual Instrument Software Architecture)的仪器进行通信。VISA是一种标准的仪器通信接口,支持多种物理层,如GPIB、USB、以太网等。PyVISA库简化了仪器通信的复杂性,使得开发者可以更专注于测试逻辑的实现。

1.2.1 安装PyVISA

在开始之前,需要安装PyVISA库。可以使用pip进行安装:


pip install pyvisa

1.2.2 初始化PyVISA

使用PyVISA进行仪器通信的第一步是初始化资源管理器。资源管理器负责管理所有连接的仪器资源。


import pyvisa



# 初始化资源管理器

rm = pyvisa.ResourceManager()



# 打印所有可用的仪器资源

print(rm.list_resources())

1.3 仪器资源的连接

连接仪器资源是通过资源管理器来完成的。资源管理器会根据仪器的接口类型和地址来找到并连接仪器。

1.3.1 通过GPIB连接

# 连接GPIB地址为1的仪器

instrument = rm.open_resource('GPIB0::1::INSTR')



# 发送SCPI命令查询仪器标识信息

response = instrument.query('*IDN?')

print(response)

1.3.2 通过USB连接

# 连接USB地址为0x0957::0x0407::MY44010074::0.0.2::INSTR的仪器

instrument = rm.open_resource('USB0::0x0957::0x0407::MY44010074::0.0.2::INSTR')



# 发送SCPI命令查询仪器标识信息

response = instrument.query('*IDN?')

print(response)

1.3.3 通过以太网连接

# 连接以太网地址为192.168.1.100的仪器

instrument = rm.open_resource('TCPIP::192.168.1.100::INSTR')



# 发送SCPI命令查询仪器标识信息

response = instrument.query('*IDN?')

print(response)

2. 仪器控制命令

仪器控制命令用于控制仪器的各种功能,如设置测量参数、启动测量、读取测量结果等。本节将详细介绍如何使用SCPI命令进行仪器控制,并提供具体的代码示例。

2.1 设置测量参数

设置测量参数是仪器控制的基本操作。不同的仪器有不同的参数设置命令,但通常都遵循SCPI标准。

2.1.1 设置电压测量范围

# 设置电压测量范围为10V

instrument.write('VOLT:RANG 10')

2.1.2 设置电流测量范围

# 设置电流测量范围为1A

instrument.write('CURR:RANG 1')

2.2 启动测量

启动测量通常使用INIT命令。在某些仪器中,也可以使用TRIG命令来触发测量。

2.2.1 启动电压测量

# 启动电压测量

instrument.write('INIT')

2.2.2 启动电流测量

# 启动电流测量

instrument.write('INIT')

2.3 读取测量结果

读取测量结果通常使用FETCHREAD命令。FETCH命令用于获取最近一次测量的结果,而READ命令用于获取并启动新的测量。

2.3.1 读取电压测量结果

# 读取电压测量结果

voltage = instrument.query('FETCH?')

print(f"电压测量结果: {voltage} V")

2.3.2 读取电流测量结果

# 读取电流测量结果

current = instrument.query('READ?')

print(f"电流测量结果: {current} A")

3. 仪器状态查询

仪器状态查询用于了解仪器的当前状态,如错误信息、测量模式等。本节将详细介绍如何使用SCPI命令进行仪器状态查询,并提供具体的代码示例。

3.1 查询仪器错误信息

查询仪器错误信息是调试过程中的重要步骤。通过SYST:ERR?命令可以获取仪器的错误信息。

3.1.1 查询错误信息

# 查询仪器错误信息

error = instrument.query('SYST:ERR?')

print(f"仪器错误信息: {error}")

3.2 查询测量模式

查询测量模式可以了解仪器当前的测量设置。通过CONF?命令可以获取仪器的测量模式。

3.2.1 查询测量模式

# 查询测量模式

mode = instrument.query('CONF?')

print(f"当前测量模式: {mode}")

4. 仪器配置与校准

仪器配置与校准是确保测量准确性的关键步骤。本节将详细介绍如何使用SCPI命令进行仪器配置和校准,并提供具体的代码示例。

4.1 仪器配置

仪器配置包括设置仪器的各种参数,如输入阻抗、滤波器设置等。

4.1.1 设置输入阻抗

# 设置输入阻抗为10MΩ

instrument.write('INPUT:IMPEDANCE 10E6')

4.1.2 设置滤波器带宽

# 设置滤波器带宽为100kHz

instrument.write('FILTER:BANDWIDTH 100E3')

4.2 仪器校准

仪器校准用于校正仪器的测量误差。通过CAL命令可以启动仪器的校准过程。

4.2.1 启动校准

# 启动校准过程

instrument.write('CAL')

4.2.2 查询校准状态

# 查询校准状态

cal_status = instrument.query('CAL:STAT?')

print(f"校准状态: {cal_status}")

5. 仪器数据处理

仪器数据处理是将仪器返回的原始数据转换为可用的测量结果。本节将详细介绍如何处理仪器返回的数据,并提供具体的代码示例。

5.1 数据解析

仪器返回的数据通常是字符串形式,需要进行解析才能得到具体的数值。

5.1.1 解析电压测量结果

# 读取电压测量结果

voltage_str = instrument.query('FETCH?')



# 解析电压测量结果

voltage = float(voltage_str.strip())

print(f"解析后的电压测量结果: {voltage} V")

5.1.2 解析电流测量结果

# 读取电流测量结果

current_str = instrument.query('READ?')



# 解析电流测量结果

current = float(current_str.strip())

print(f"解析后的电流测量结果: {current} A")

5.2 数据存储

将测量结果存储到文件或数据库中,以便后续分析和处理。

5.2.1 存储到CSV文件

import csv



# 读取电压测量结果

voltage = float(instrument.query('FETCH?').strip())



# 读取电流测量结果

current = float(instrument.query('READ?').strip())



# 将测量结果存储到CSV文件

with open('measurement.csv', 'a', newline='') as file:

    writer = csv.writer(file)

    writer.writerow([voltage, current])

5.2.2 存储到SQLite数据库

import sqlite3



# 读取电压测量结果

voltage = float(instrument.query('FETCH?').strip())



# 读取电流测量结果

current = float(instrument.query('READ?').strip())



# 连接SQLite数据库

conn = sqlite3.connect('measurement.db')

cursor = conn.cursor()



# 创建表

cursor.execute('''

CREATE TABLE IF NOT EXISTS measurements (

    id INTEGER PRIMARY KEY AUTOINCREMENT,

    voltage REAL,

    current REAL

)

''')



# 插入测量结果

cursor.execute('INSERT INTO measurements (voltage, current) VALUES (?, ?)', (voltage, current))



# 提交事务

conn.commit()



# 关闭数据库连接

conn.close()

6. 仪器控制的高级应用

仪器控制的高级应用包括复杂的数据处理、多仪器同步控制等。本节将详细介绍这些高级应用,并提供具体的代码示例。

6.1 复杂数据处理

复杂数据处理包括对测量结果进行统计分析、滤波处理等。

6.1.1 统计分析

import numpy as np



# 读取10次电压测量结果

voltages = []

for _ in range(10):

    voltage = float(instrument.query('FETCH?').strip())

    voltages.append(voltage)



# 计算平均值和标准差

mean_voltage = np.mean(voltages)

std_voltage = np.std(voltages)



print(f"平均电压: {mean_voltage} V")

print(f"电压标准差: {std_voltage} V")

6.1.2 滤波处理

import scipy.signal as signal



# 读取100次电压测量结果

voltages = []

for _ in range(100):

    voltage = float(instrument.query('FETCH?').strip())

    voltages.append(voltage)



# 进行低通滤波处理

b, a = signal.butter(3, 0.1, btype='lowpass', fs=1000)

filtered_voltages = signal.filtfilt(b, a, voltages)



print(f"滤波后的电压测量结果: {filtered_voltages}")

6.2 多仪器同步控制

多仪器同步控制用于同时控制多个仪器进行测量,确保测量结果的一致性和准确性。

6.2.1 同步控制多个仪器

# 连接第一个仪器

instrument1 = rm.open_resource('GPIB0::1::INSTR')



# 连接第二个仪器

instrument2 = rm.open_resource('GPIB0::2::INSTR')



# 设置第一个仪器的测量参数

instrument1.write('VOLT:RANG 10')



# 设置第二个仪器的测量参数

instrument2.write('CURR:RANG 1')



# 启动同步测量

instrument1.write('INIT')

instrument2.write('INIT')



# 读取第一个仪器的测量结果

voltage = float(instrument1.query('FETCH?').strip())



# 读取第二个仪器的测量结果

current = float(instrument2.query('READ?').strip())



print(f"电压测量结果: {voltage} V")

print(f"电流测量结果: {current} A")

6.3 仪器控制的异常处理

在仪器控制过程中,可能会遇到各种异常情况,如通信超时、仪器错误等。本节将详细介绍如何进行异常处理,并提供具体的代码示例。

6.3.1 捕获通信超时异常

try:

    # 读取电压测量结果

    voltage = float(instrument.query('FETCH?').strip())

except pyvisa.VisaIOError as e:

    print(f"通信超时异常: {e}")

else:

    print(f"电压测量结果: {voltage} V")

6.3.2 捕获仪器错误异常

try:

    # 启动电压测量

    instrument.write('INIT')

    # 读取电压测量结果

    voltage = float(instrument.query('FETCH?').strip())

except pyvisa.VisaIOError as e:

    # 查询仪器错误信息

    error = instrument.query('SYST:ERR?')

    print(f"仪器错误异常: {error}")

else:

    print(f"电压测量结果: {voltage} V")

7. 仪器控制的最佳实践

在实际开发过程中,遵循一些最佳实践可以提高代码的可读性、可维护性和健壮性。本节将详细介绍仪器控制的最佳实践,并提供具体的代码示例。

7.1 使用上下文管理器

使用上下文管理器可以确保资源在使用后被正确关闭,避免资源泄漏。

7.1.1 使用上下文管理器连接仪器

# 使用上下文管理器连接仪器

with rm.open_resource('GPIB0::1::INSTR') as instrument:

    # 查询仪器标识信息

    response = instrument.query('*IDN?')

    print(response)

7.2 分模块开发

将仪器控制代码分模块开发可以提高代码的组织性和可复用性。例如,可以将仪器连接、配置、测量和数据处理分别封装在不同的模块中。

7.2.1 仪器连接模块

# instrument_connection.py

import pyvisa



def connect_instrument(resource_name):

    rm = pyvisa.ResourceManager()

    instrument = rm.open_resource(resource_name)

    return instrument

7.2.2 仪器配置模块

# instrument_configuration.py

def set_voltage_range(instrument, range_value):

    instrument.write(f'VOLT:RANG {range_value}')



def set_current_range(instrument, range_value):

    instrument.write(f'CURR:RANG {range_value}')

7.2.3 仪器测量模块

# instrument_measurement.py

def measure_voltage(instrument):

    voltage = float(instrument.query('FETCH?').strip())

    return voltage



def measure_current(instrument):

    current = float(instrument.query('READ?').strip())

    return current

7.2.4 数据处理模块

# data_processing.py

import numpy as np



def calculate_mean(data):

    return np.mean(data)



def calculate_standard_deviation(data):

    return np.std(data)

7.3 日志记录

日志记录是调试和维护过程中不可或缺的一部分。使用Python的logging模块可以方便地记录日志信息。

7.3.1 记录日志

import logging



# 配置日志记录

logging.basicConfig(filename='instrument_control.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')



# 记录连接仪器的日志

instrument = connect_instrument('GPIB0::1::INSTR')

logging.info(f"连接仪器: {instrument.resource_name}")



# 记录设置测量参数的日志

set_voltage_range(instrument, 10)

logging.info("设置电压测量范围为10V")



# 记录启动测量的日志

instrument.write('INIT')

logging.info("启动电压测量")



# 记录读取测量结果的日志

voltage = measure_voltage(instrument)

logging.info(f"电压测量结果: {voltage} V")

8. 仪器控制的性能优化

在进行大量数据测量和处理时,性能优化是必要的。本节将详细介绍如何进行仪器控制的性能优化,并提供具体的代码示例。

8.1 并行测量

使用多线程或多进程可以实现并行测量,提高测量效率。在测试系统中,尤其是在需要同时控制多个仪器时,这种方式可以显著减少总的测量时间。

8.1.1 使用多线程进行并行测量

import threading

import pyvisa



def measure_and_store(instrument, resource_name):

    with instrument:

        voltage = float(instrument.query('FETCH?').strip())

        current = float(instrument.query('READ?').strip())

        print(f"仪器 {resource_name} 的电压测量结果: {voltage} V")

        print(f"仪器 {resource_name} 的电流测量结果: {current} A")



# 初始化资源管理器

rm = pyvisa.ResourceManager()



# 连接第一个仪器

instrument1 = rm.open_resource('GPIB0::1::INSTR')



# 连接第二个仪器

instrument2 = rm.open_resource('GPIB0::2::INSTR')



# 创建线程

thread1 = threading.Thread(target=measure_and_store, args=(instrument1, 'GPIB0::1::INSTR'))

thread2 = threading.Thread(target=measure_and_store, args=(instrument2, 'GPIB0::2::INSTR'))



# 启动线程

thread1.start()

thread2.start()



# 等待线程完成

thread1.join()

thread2.join()

8.2 数据批量读取

批量读取数据可以减少通信次数,提高数据读取效率。对于需要连续测量的仪器,批量读取数据是一个非常有效的优化手段。

8.2.1 批量读取电压和电流数据

import pyvisa



# 初始化资源管理器

rm = pyvisa.ResourceManager()



# 连接仪器

instrument = rm.open_resource('GPIB0::1::INSTR')



# 批量读取100次电压和电流数据

data = []

for _ in range(100):

    voltage = float(instrument.query('FETCH?').strip())

    current = float(instrument.query('READ?').strip())

    data.append((voltage, current))



print(f"批量读取的数据: {data}")



# 将批量读取的数据存储到CSV文件

with open('measurement.csv', 'a', newline='') as file:

    writer = csv.writer(file)

    writer.writerows(data)

8.3 优化通信参数

优化通信参数可以提高通信的稳定性。例如,调整超时时间、缓存大小等。这些参数的优化有助于减少通信错误和提高数据传输速率。

8.3.1 调整超时时间

import pyvisa



# 初始化资源管理器

rm = pyvisa.ResourceManager()



# 连接仪器

instrument = rm.open_resource('GPIB0::1::INSTR')



# 调整超时时间为10秒

instrument.timeout = 10000



# 发送SCPI命令查询仪器标识信息

response = instrument.query('*IDN?')

print(response)

8.3.2 调整缓存大小

import pyvisa



# 初始化资源管理器

rm = pyvisa.ResourceManager()



# 连接仪器

instrument = rm.open_resource('GPIB0::1::INSTR')



# 调整缓存大小为1024字节

instrument.chunk_size = 1024



# 发送SCPI命令查询仪器标识信息

response = instrument.query('*IDN?')

print(response)

9. 仪器控制的常见问题与解决方案

在进行仪器控制时,可能会遇到各种问题。本节将详细介绍一些常见的问题及其解决方案,帮助开发者顺利进行仪器控制。

9.1 通信超时

通信超时是常见的问题之一,通常发生在仪器响应时间较长或网络不稳定的情况下。

9.1.1 解决通信超时问题

import pyvisa



# 初始化资源管理器

rm = pyvisa.ResourceManager()



# 连接仪器

instrument = rm.open_resource('GPIB0::1::INSTR')



# 调整超时时间为30秒

instrument.timeout = 30000



try:

    # 发送SCPI命令查询仪器标识信息

    response = instrument.query('*IDN?')

    print(response)

except pyvisa.VisaIOError as e:

    print(f"通信超时异常: {e}")

9.2 仪器未响应

仪器未响应可能是由于仪器故障、接口问题或命令错误等原因引起的。

9.2.1 解决仪器未响应问题

import pyvisa



# 初始化资源管理器

rm = pyvisa.ResourceManager()



# 连接仪器

instrument = rm.open_resource('GPIB0::1::INSTR')



try:

    # 发送SCPI命令查询仪器标识信息

    response = instrument.query('*IDN?')

    print(response)

except pyvisa.VisaIOError as e:

    # 查询仪器错误信息

    error = instrument.query('SYST:ERR?')

    print(f"仪器错误异常: {error}")

9.3 仪器命令错误

仪器命令错误通常是由于发送了不正确的SCPI命令或命令格式错误引起的。

9.3.1 解决仪器命令错误问题

import pyvisa



# 初始化资源管理器

rm = pyvisa.ResourceManager()



# 连接仪器

instrument = rm.open_resource('GPIB0::1::INSTR')



try:

    # 发送SCPI命令设置电压测量范围

    instrument.write('VOLT:RANG 10')

except pyvisa.VisaIOError as e:

    # 查询仪器错误信息

    error = instrument.query('SYST:ERR?')

    print(f"仪器命令错误: {error}")

else:

    print("电压测量范围设置成功")

10. 仪器控制的实际案例

本节将通过一个实际案例来展示如何综合使用上述技术进行仪器控制和数据处理。案例涉及连接多台仪器,设置测量参数,启动测量,读取并处理数据,最终将结果存储到数据库中。

10.1 案例背景

假设我们有一个测试系统,需要同时测量多台仪器的电压和电流,并将结果存储到SQLite数据库中。每台仪器的连接方式不同,包括GPIB、USB和以太网。

10.2 代码实现

10.2.1 仪器连接模块

# instrument_connection.py

import pyvisa



def connect_instrument(resource_name):

    rm = pyvisa.ResourceManager()

    instrument = rm.open_resource(resource_name)

    return instrument

10.2.2 仪器配置模块

# instrument_configuration.py

def set_voltage_range(instrument, range_value):

    instrument.write(f'VOLT:RANG {range_value}')



def set_current_range(instrument, range_value):

    instrument.write(f'CURR:RANG {range_value}')

10.2.3 仪器测量模块

# instrument_measurement.py

def measure_voltage(instrument):

    voltage = float(instrument.query('FETCH?').strip())

    return voltage



def measure_current(instrument):

    current = float(instrument.query('READ?').strip())

    return current

10.2.4 数据处理模块

# data_processing.py

import numpy as np



def calculate_mean(data):

    return np.mean(data)



def calculate_standard_deviation(data):

    return np.std(data)

10.2.5 数据存储模块

# data_storage.py

import sqlite3



def store_measurement(voltage, current):

    conn = sqlite3.connect('measurement.db')

    cursor = conn.cursor()



    # 创建表

    cursor.execute('''

    CREATE TABLE IF NOT EXISTS measurements (

        id INTEGER PRIMARY KEY AUTOINCREMENT,

        voltage REAL,

        current REAL

    )

    ''')



    # 插入测量结果

    cursor.execute('INSERT INTO measurements (voltage, current) VALUES (?, ?)', (voltage, current))



    # 提交事务

    conn.commit()



    # 关闭数据库连接

    conn.close()

10.2.6 主程序

# main.py

import threading

import instrument_connection

import instrument_configuration

import instrument_measurement

import data_processing

import data_storage



def measure_and_store(instrument, resource_name):

    with instrument:

        # 设置测量参数

        instrument_configuration.set_voltage_range(instrument, 10)

        instrument_configuration.set_current_range(instrument, 1)



        # 启动测量

        instrument.write('INIT')



        # 读取测量结果

        voltage = instrument_measurement.measure_voltage(instrument)

        current = instrument_measurement.measure_current(instrument)



        print(f"仪器 {resource_name} 的电压测量结果: {voltage} V")

        print(f"仪器 {resource_name} 的电流测量结果: {current} A")



        # 存储测量结果

        data_storage.store_measurement(voltage, current)



# 连接第一个仪器

instrument1 = instrument_connection.connect_instrument('GPIB0::1::INSTR')



# 连接第二个仪器

instrument2 = instrument_connection.connect_instrument('USB0::0x0957::0x0407::MY44010074::0.0.2::INSTR')



# 连接第三个仪器

instrument3 = instrument_connection.connect_instrument('TCPIP::192.168.1.100::INSTR')



# 创建线程

thread1 = threading.Thread(target=measure_and_store, args=(instrument1, 'GPIB0::1::INSTR'))

thread2 = threading.Thread(target=measure_and_store, args=(instrument2, 'USB0::0x0957::0x0407::MY44010074::0.0.2::INSTR'))

thread3 = threading.Thread(target=measure_and_store, args=(instrument3, 'TCPIP::192.168.1.100::INSTR'))



# 启动线程

thread1.start()

thread2.start()

thread3.start()



# 等待线程完成

thread1.join()

thread2.join()

thread3.join()

11. 总结

通过本节的介绍,我们详细探讨了如何使用Python和Keysight的仪器控制库(如PyVISA)来实现与Keysight仪器的通信。我们从基础的仪器通信开始,逐步深入到仪器控制命令、状态查询、配置与校准,再到数据处理和性能优化。最后,我们通过一个实际案例展示了如何综合运用这些技术进行多仪器的同步控制和数据处理。

希望这些内容能够帮助读者更好地理解和掌握仪器控制与通信的技术,提高测试软件的开发效率和质量。

内容概要:本文档详细介绍了如何使用MATLAB实现粒子群优化算法(PSO)优化极限学习机(ELM)进行时间序列预测的项目实例。项目背景指出,PSO通过模拟鸟群觅食行为进行全局优化,ELM则以其快速训练和强泛化能力著称,但对初始参数敏感。结合两者,PSO-ELM模型能显著提升时间序列预测的准确性。项目目标包括提高预测精度、降低训练时间、处理复杂非线性问题、增强模型稳定性和鲁棒性,并推动智能化预测技术的发展。面对数据质量问题、参数优化困难、计算资源消耗、模型过拟合及非线性特征等挑战,项目采取了数据预处理、PSO优化、并行计算、交叉验证等解决方案。项目特点在于高效的优化策略、快速的训练过程、强大的非线性拟合能力和广泛的适用性。; 适合人群:对时间序列预测感兴趣的研究人员、数据科学家以及有一定编程基础并希望深入了解机器学习优化算法的工程师。; 使用场景及目标:①金融市场预测,如股票走势预测;②气象预报,提高天气预测的准确性;③交通流量预测,优化交通管理;④能源需求预测,确保能源供应稳定;⑤医疗健康预测,辅助公共卫生决策。; 其他说明:文档提供了详细的模型架构描述和MATLAB代码示例,涵盖数据预处理、PSO优化、ELM训练及模型评估等关键步骤,帮助读者全面理解和实践PSO-ELM模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值