SCAU 数据结构实验4 8606 17121 1892418724 18923 8609 二叉树的构建遍历,宽度,各种节点数,直径,哈夫曼树,综合性实验

8606 二叉树的构建及遍历操作

时间限制:1000MS  代码长度限制:10KB
提交次数:2653 通过次数:1597

题型: 编程题   语言: G++;GCC

Description

 构造二叉链表表示的二叉树:按先序次序输入二叉树中结点的值(一个字符),'#'字符表示空树,构造二叉链表表示的二叉树T;再输出三种遍历序列。本题只给出部分代码,请补全内容。

#include "stdio.h"
#include "malloc.h"
#define TRUE 1
#define FALSE 0
#define OK  1
#define ERROR  0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int  Status;

typedef char  ElemType;
typedef struct BiTNode{
  ElemType data;
  struct BiTNode *lchild,*rchild;//左右孩子指针
} BiTNode,*BiTree;

Status CreateBiTree(BiTree &T) {  // 算法6.4
  // 按先序次序输入二叉树中结点的值(一个字符),’#’字符表示空树,
  // 构造二叉链表表示的二叉树T。
  char ch;
  scanf("%c",&ch);
  if (ch=='#') T = NULL;
  else {
    if (!(T = (BiTNode *)malloc(sizeof(BiTNode)))) return ERROR;
    ________________________ // 生成根结点
     _______________________   // 构造左子树
    _________________________  // 构造右子树
  }
  return OK;
} // CreateBiTree





Status PreOrderTraverse( BiTree T) {
   // 前序遍历二叉树T的递归算法
   //补全代码,可用多个语句
  
} // PreOrderTraverse

Status InOrderTraverse( BiTree T) {
     // 中序遍历二叉树T的递归算法
    //补全代码,可用多个语句
    
  
} // InOrderTraverse

Status PostOrderTraverse( BiTree T) {
     // 后序遍历二叉树T的递归算法
     //补全代码,可用多个语句
    
} // PostOrderTraverse

int main()   //主函数
{
                      //补充代码
 }//main

输入格式

第一行:输入一棵二叉树的先序遍历序列

输出格式

第一行:二叉树的先序遍历序列
第二行:二叉树的中序遍历序列
第三行:二叉树的后序遍历序列

输入样例

AB##C##

输出样例

ABC
BAC
BCA
#include "stdio.h"
#include "malloc.h"
#include<iostream>
using namespace std;
#define TRUE 1
#define FALSE 0
#define OK  1
#define ERROR  0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int  Status;

typedef char  ElemType;
typedef struct BiTNode {
	ElemType data;
	struct BiTNode* lchild, * rchild;//左右孩子指针
} BiTNode, * BiTree;

Status CreateBiTree(BiTree& T) {  // 算法6.4
	// 按先序次序输入二叉树中结点的值(一个字符),’#’字符表示空树,
	// 构造二叉链表表示的二叉树T。
	char ch;
	scanf("%c", &ch);
	if (ch == '#') T = NULL;
	else {
		if (!(T = (BiTNode*)malloc(sizeof(BiTNode)))) return ERROR;
		T->data = ch; // 生成根结点
		CreateBiTree(T->lchild);  // 构造左子树
		CreateBiTree(T->rchild);// 构造右子树
	}
	return OK;
} // CreateBiTree

17121 求二叉树各种节点数

时间限制:1000MS  代码长度限制:10KB
提交次数:0 通过次数:0

题型: 编程题   语言: G++;GCC

Description

构造二叉链表表示的二叉树:按先序次序输入二叉树中结点的值(一个字符),'#'字符表示空树,构造二叉链表表示的二叉树T,并求此二叉树中度为2的节点总数,度为1的节点总数,度为0的节点总数

#include "stdio.h"
#include "malloc.h"
#define TRUE 1
#define FALSE 0
#define OK  1
#define ERROR  0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int  Status;

typedef char  ElemType;
typedef struct BiTNode{
  ElemType data;
  struct BiTNode *lchild,*rchild;//左右孩子指针
} BiTNode,*BiTree;

Status CreateBiTree(BiTree &T) {  // 算法6.4
  // 按先序次序输入二叉树中结点的值(一个字符),’#’字符表示空树,
  // 构造二叉链表表示的二叉树T。
  char ch;
  scanf("%c",&ch);
  if (ch=='#') T = NULL;
  else {
    if (!(T = (BiTNode *)malloc(sizeof(BiTNode)))) return ERROR;
    ________________________ // 生成根结点
     _______________________   // 构造左子树
    _________________________  // 构造右子树
  }
  return OK;
} // CreateBiTree


int main()   //主函数
{
                      //补充代码
 }//main


 

输入格式

第一行输入先序次序二叉树中结点
 

输出格式

第一行输出度为2的节点数
第二行输出度为1的节点数
第三行输出度为0的节点数
 

输入样例

ABC###D##
 

输出样例

1
1
2


#include "stdio.h"
#include "malloc.h"
#include<iostream>
#include<algorithm>
using namespace std;
#define TRUE 1
#define FALSE 0
#define OK  1
#define ERROR  0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int  Status;

typedef char  ElemType;
int degree[3] = { 0 };
typedef struct BiTNode {
    ElemType data;
    struct BiTNode* lchild, * rchild;//左右孩子指针
} BiTNode, * BiTree;

Status CreateBiTree(BiTree& T) {  // 算法6.4
    // 按先序次序输入二叉树中结点的值(一个字符),’#’字符表示空树,
    // 构造二叉链表表示的二叉树T。
    char ch;
    scanf("%c", &ch);
    if (ch == '#') T = NULL;
    else {
        if (!(T = (BiTNode*)malloc(sizeof(BiTNode)))) return ERROR;
        T->data = ch;// 生成根结点
        CreateBiTree(T->lchild);  // 构造左子树
        CreateBiTree(T->rchild);  // 构造右子树
    }
    return OK;
} // CreateBiTree
void getTreeDegree(BiTree& T) {
    if (!T)return;
    if (T->lchild && T->rchild) {
        degree[2]++;
    }
    else if (T->lchild || T->rchild) {
        degree[1]++;
    }
    else {
        degree[0]++;
    }
    getTreeDegree(T->lchild);
    getTreeDegree(T->rchild);
}

int main()   //主函数
{
    BiTree T;
    CreateBiTree(T);
    getTreeDegree(T);
    cout << degree[2] << endl << degree[1] << endl << degree[0];
    return 0;
}//main

18924 二叉树的宽度

时间限制:1000MS  代码长度限制:10KB
提交次数:0 通过次数:0

题型: 编程题   语言: G++;GCC

Description

二叉树的宽度指的是具有节点数目最多的那一层的节点个数。
          1
         / \
        2   3
       /     
      4     
答案为2, 第二层节点数最多,为2个节点。


 

输入格式

共n行。
第一行一个整数n,表示有n个结点,编号为1至n,结点1为树根。(1<=n<=50)
第二行至第n行,每行有两个整数x和y,表示在二叉树中x为y的父节点。x第一次出现时y为左孩子
 

输出格式

输出二叉树的宽度。
 

输入样例

5
1 2
1 3
2 4
2 5
 

输出样例

2

#include<iostream>
#include<algorithm>
using namespace std;
struct Tree {
	int parent;
	int left;
	int right;//用数组下标表示节点
}tree[100];
int LevelNumber[100];//就是题目那里说的那个宽度,我就翻译成数量了,java写多了喜欢用驼峰命名
void add(int parent, int child) {
	tree[child].parent = parent;
	if (!tree[parent].left) {//判断做哪边儿子
		tree[parent].left = child;
	}
	else {
		tree[parent].right = child;
	}
}
void getLevelNumber(int root, int depth) {
	LevelNumber[depth]++;
	if (tree[root].left) {
		getLevelNumber(tree[root].left, depth + 1);
	}
	if (tree[root].right) {
		getLevelNumber(tree[root].right, depth + 1);
	}
}
int main() {
	int n;
	cin >> n;
	for (int i = 1; i < n; i++) {
		int x, y;
		cin >> x >> y;
		add(x, y);
	}
	int root = 0;
	for (int i = 1; i <= n; i++) {
		if (tree[i].parent == 0) {
			root = i;
			break;
		}
	}
	getLevelNumber(root, 1);
	int ans = 0;
	for (int i = 1; i <= n; i++) {
		ans = max(ans, LevelNumber[i]);
	}
	cout << ans << endl;
	return 0;
}

18724 二叉树的遍历运算

时间限制:1000MS  代码长度限制:10KB
提交次数:0 通过次数:0

题型: 编程题   语言: G++;GCC

Description

二叉树的三种遍历都可以通过递归实现。
如果我们知道一棵二叉树的先序和中序序列,可以用递归的方法求后序遍历序列。



 

输入格式

两行,第一行一个字符串,表示树的先序遍历,第二行一个字符串,表示树的中序遍历。
树的结点一律用小写字母表示,且字符串长度不超过30。


 

输出格式

一个字符串,树的后序序列。


 

输入样例

abcde
bcade


 

输出样例

cbeda

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
char preOrder[100];
char inOrder[100];
//前序遍历是根-左子树-右子树
//中序是左子树-根-右子树
//所以按照这个规律,每次递归的preIdx1对应的preOrder就是当前树的根,然后中序中该根的左右分别是他们的子树
//通过中序求出子树长度就可以分别递归去进行后序遍历了
void dfs(int preIdx1, int preIdx2, int inIdx1, int inIdx2) {
	if (preIdx1 > preIdx2) {
		return;
	}
	int i;
	char node = preOrder[preIdx1];//前序遍历的第一个一定是根节点
	for (i = 1; i <= inIdx2; i++) {
		if (inOrder[i] == node) {
			break;
		}
	}
	int len = i - inIdx1;
	dfs(preIdx1 + 1, preIdx1 + len, inIdx1, inIdx1 + len - 1);//pre的左子树的节点数量就是len
	dfs(preIdx1 + len + 1, preIdx2, inIdx1 + len + 1, inIdx2);
	cout << node;
	//左-右-中的后序遍历
}
int main() {
	cin >> preOrder + 1;
	cin >> inOrder + 1;
	dfs(1, strlen(preOrder + 1), 1, strlen(inOrder + 1));
	return 0;
}

18923 二叉树的直径

时间限制:1000MS  代码长度限制:10KB
提交次数:0 通过次数:0

题型: 编程题   语言: G++;GCC

Description

给定一棵二叉树,你需要计算它的直径长度。一棵二叉树的直径长度是任意两个结点路径长度中的最大值。这条路径可能穿过也可能不穿过根结点。
          1
         / \
        2   3
       / \     
      4   5   
答案为3, 它的长度是路径 [4,2,1,3] 或者 [5,2,1,3]。


 

输入格式

共n行。
第一行一个整数n,表示有n个结点,编号为1至n。
第二行至第n行,每行有两个整数x和y,表示在二叉树中x为y的父节点。x第一次出现时y为左孩子
 

输出格式

输出二叉树的直径。
 

输入样例

5
1 2
1 3
2 4
2 5
 

输出样例

3

#include<iostream>
#include<algorithm>
using namespace std;
struct Tree {
	int parent;
	int left;
	int right;//用数组下标表示节点
}tree[100];
int LevelNumber[100];//就是题目那里说的那个宽度,我就翻译成数量了,java写多了喜欢用驼峰命名
void add(int parent, int child) {
	tree[child].parent = parent;
	if (!tree[parent].left) {//判断做哪边儿子
		tree[parent].left = child;
	}
	else {
		tree[parent].right = child;
	}
}
int getDepth(int node) {
	if (node == 0) {
		return 0;
	}
	else {
		int left = getDepth(tree[node].left);
		int right = getDepth(tree[node].right);
		if (left>right) {
			return left + 1;
		}
		else {
			return right + 1;
		}
	}
}
int main() {
	int n;
	int Max = 0;
	cin >> n;
	for (int i = 1; i < n; i++) {
		int x, y;
		cin >> x >> y;
		add(x, y);
	}
	int root = 0;
	for (int i = 1; i <= n; i++) {
		int depth = getDepth(tree[i].left) + getDepth(tree[i].right);
		Max = max(Max, depth);
	}
	cout << Max << endl;
	return 0;
}

8609 哈夫曼树

时间限制:1000MS  代码长度限制:10KB
提交次数:3178 通过次数:1263

题型: 编程题   语言: G++;GCC

Description

利用静态链表建立赫夫曼树,建树过程中要求左子树权值小于右子树权值,求各结点的编码。要求:叶子结点的个数n及结点值由键盘录入。本题给出程序代码,要求填空以满足测试要求.
#include "stdio.h"
#include "string.h"
#include 
using namespace std;
typedef struct
{
    unsigned int weight;
    unsigned int parent,lchild,rchild;
} HTNode,*HuffmanTree;
typedef char **HuffmanCode;
void   select(HuffmanTree &HT, int n, int &s1, int &s2)
{//在HT[1..n]中选择parent为0且weight最小的两个结点, 其序号分别为s1(最小)和s2(次小)。
   __________________________
}
void createHuffmanTree(HuffmanTree &HT, int n)
{ //构造哈夫曼树HT
    int i, m, s1, s2;
    if (n<=1) return;
    m = 2 * n - 1;
    HT = new HTNode[m+1];  // 0号单元未用
    for (i=1; i<=m; i++) { //初始化HT数组
        HT[i].parent=0;HT[i].lchild=0;HT[i].rchild=0;
    }
    for (i=1; i<=n; i++)
        cin>>HT[i].weight;
    for (i=n+1; i<=m; i++)    // 建哈夫曼树
    { //在HT[1..i-1]中选择parent为0且weight最小的两个结点, 其序号分别为s1(最小)和s2(次小)
         _______________________________
    }
}
void createHuffmanCode(HuffmanTree HT,HuffmanCode &HC,int n)
{//--- 从叶子到根逆向求每个字符的哈夫曼编码 ---
    char *cd = new char[n];    // 分配求编码的工作空间
    cd[n-1] = '\0';  // 编码结束符。
    int i,c,f,start;
    for (i=1; i<=n; ++i)
    {
        start = n-1;
        c=i, f=HT[i].parent;
        while(f)// 从叶子到根逆向求编码
        {
            --start;
            if (HT[f].lchild==c) cd[start] = '0';
            else cd[start] = '1';
            c=f,f=HT[f].parent;
        }
        HC[i] = new char[n-start];// 为第i个字符编码分配空间
        strcpy(HC[i], &cd[start]);    // 从cd复制编码(串)到HC
    }
}
int main()
{
    int i,n;
    int *w;
    HuffmanTree HT;
    HuffmanCode HC;
    scanf("%d",&n);  //权值个数
    HC=new char*[n+1]; //0空间未用
    createHuffmanTree(HT,n);
    createHuffmanCode(HT,HC,n);
    for (i = 1; i<=n; i++)
        printf("%s\n",HC[i]);  //输出哈夫曼编码
}



 

输入格式

第一行:权值个数
第二行:输入n个权值,用空格分隔


 

输出格式

输出n行
每行表示各权值对应的哈夫曼编码


 

输入样例

8
5 29 7 8 14 23 3 11


 

输出样例

0001
10
1110
1111
110
01
0000
001
#include "stdio.h"
#include "string.h"
#include<iostream>
using namespace std;
typedef struct
{
    unsigned int weight;
    unsigned int parent, lchild, rchild;
} HTNode, * HuffmanTree;
typedef char** HuffmanCode;
void   select(HuffmanTree& HT, int n, int& s1, int& s2)
{//在HT[1..n]中选择parent为0且weight最小的两个结点, 其序号分别为s1(最小)和s2(次小)。
    int i, min1 = 99999, min2=min1+10;
    int node1, node2;
    node1 = node2 = 0;
    for (int i = 1; i <= n; i++) {
        if (!HT[i].parent) {
            if (HT[i].weight < min1) {
                min2 = min1;
                s2 = s1;
                s1 = i;
                min1 = HT[i].weight;
            }
            else if(HT[i].weight>=min1&&HT[i].weight<min2) {
                min2 = HT[i].weight;
                s2 = i;
            }
        }
    }
}
void createHuffmanTree(HuffmanTree& HT, int n)
{ //构造哈夫曼树HT
    int i, m, s1, s2;
    if (n <= 1) return;
    m = 2 * n - 1;//n个节点经过合成后会多出n-1个节点
    HT = new HTNode[m + 1];  // 0号单元未用
    for (i = 1; i <= m; i++) { //初始化HT数组
        HT[i].parent = 0; HT[i].lchild = 0; HT[i].rchild = 0;
    }
    for (i = 1; i <= n; i++)
        cin >> HT[i].weight;
    for (i = n + 1; i <= m; i++)    // 建哈夫曼树
    { //在HT[1..i-1]中选择parent为0且weight最小的两个结点, 其序号分别为s1(最小)和s2(次小)
        int s1, s2;
        select(HT, i - 1, s1, s2);
        HT[s1].parent = HT[s2].parent = i;
        HT[i].lchild = s1, HT[i].rchild = s2;
        HT[i].weight = HT[s1].weight + HT[s2].weight;
    }
}
void createHuffmanCode(HuffmanTree HT, HuffmanCode& HC, int n)
{//--- 从叶子到根逆向求每个字符的哈夫曼编码 ---
    char* cd = new char[n];    // 分配求编码的工作空间
    cd[n - 1] = '\0';  // 编码结束符。
    int i, c, f, start;
    for (i = 1; i <= n; ++i)
    {
        start = n - 1;
        c = i, f = HT[i].parent;
        while (f)// 从叶子到根逆向求编码
        {
            --start;
            if (HT[f].lchild == c) cd[start] = '0';
            else cd[start] = '1';
            c = f, f = HT[f].parent;
        }
        HC[i] = new char[n - start];// 为第i个字符编码分配空间
        strcpy(HC[i], &cd[start]);    // 从cd复制编码(串)到HC
    }
}
int main()
{
    int i, n;
    int* w;
    HuffmanTree HT;
    HuffmanCode HC;
    scanf("%d", &n);  //权值个数
    HC = new char* [n + 1]; //0空间未用
    createHuffmanTree(HT, n);
    createHuffmanCode(HT, HC, n);
    for (i = 1; i <= n; i++)
        printf("%s\n", HC[i]);  //输出哈夫曼编码
}

#include<iostream>
#include<algorithm>
#include<stack>
#include<queue>
using namespace std;
typedef struct BinaryNode {
	int data;
	struct BinaryNode* left, * right;
}BinaryNode, * BinaryTree;
void InsertToBinaryTree(BinaryTree &T,int data) {
	if (!T) {
		BinaryTree S;
		S = new BinaryNode;
		S->data = data;
		S->left = S->right = NULL;
		T = S;
	}
	else if (data < (T->data)) {
		InsertToBinaryTree(T->left, data);
	}
	else if (data > T->data) {
		InsertToBinaryTree(T->right, data);
	}
}
void PreOrderTraverse(BinaryTree T) {
	if (T == NULL) {
		return;
	}
	cout << T->data << ' ';
	PreOrderTraverse(T->left);
	PreOrderTraverse(T->right);
}
void PreOrderTraverse2(BinaryTree T) {
	stack<BinaryTree>S;
	BinaryTree p = T;
	while (p) {
		cout << p->data << ' ';
		S.push(p);
		p = p->left;
	}
	while (!S.empty()) {
		p = S.top();
		S.pop();
		cout << p->data << ' ';
		p = p->right;
		while (p) {
			cout << p->data << ' ';
			S.push(p);
			p = p->left;
		}
	}
	cout << endl;
}
void InOrderTraverse(BinaryTree T) {
	if (T == NULL) {
		return;
	}
	InOrderTraverse(T->left);
	cout << T->data << ' ';
	InOrderTraverse(T->right);
}
void InOrderTraverse2(BinaryTree T) {
	stack<BinaryTree>S;
	BinaryTree p = T;
	while (p || !S.empty()) {
		if (p) {
			S.push(p);
			p = p->left;
		}
		else {
			p = S.top();
			S.pop();
			cout << p->data << ' ';
			p = p->right;
		}
	}
	cout << endl;
}
void PostOrderTraverse(BinaryTree T) {
	if (T == NULL) {
		return;
	}
	PostOrderTraverse(T->left);
	PostOrderTraverse(T->right);
	cout << T->data << ' ';
}
void PostOrderTraverse2(BinaryTree T) {
	stack<BinaryTree>S;
	BinaryTree p = T, pre = NULL;
	while (p) {
		S.push(p);
		p = p->left;
	}
	while (!S.empty()) {
		p = S.top();
		if ((p->left == NULL && p->right == NULL) || (p->left == pre && p->right == NULL) || (p->right == pre)) {
			cout << p->data << ' ';
			pre = p;
			S.pop();
		}
		else {
			p = p->right;
			while (p) {
				S.push(p);
				p = p->left;
			}
		}
	}
	cout << endl;
}
void LTB(BinaryTree T) {
	queue<BinaryTree>q;
	BinaryTree p=T;
	q.push(p);
	while (!q.empty()) {
		p = q.front();
		cout << p->data << ' ';
		q.pop();
		if (p->left != NULL)
			q.push(p->left);
		if (p->right != NULL)
			q.push(p -> right);
	}
	cout << endl;
}
int SearchKey(BinaryTree T, int key) {
	if (!T) {
		return 0;
	}
	else if (T->data == key) {
		return 1;
	}
	else if (T->data > key) {
		return SearchKey(T->left, key);
	}
	else if (T->data < key) {
		return SearchKey(T->right, key);
	}
}
void SwapChildNode(BinaryTree &T) {
	if (!T) {
		return;
	}
	BinaryTree t = T->left;
	T->left = T->right;
	T->right = t;
	SwapChildNode(T->left);
	SwapChildNode(T->right);
}
int NodeNumber(BinaryTree T) {
	if (!T)return 0;
	else if (T->left == NULL && T -> right == NULL)
	{
		return 1;
	}
	else {
		return NodeNumber(T->left) + NodeNumber(T -> right);
	}
}
int Depth(BinaryTree T) {
	if (!T)return 0;
	return max(Depth(T->left), Depth(T->right)) + 1;
}
int main() {
	BinaryTree T = NULL;
	int n, data;
	cin >> n;
	for (int i = 0; i < n; i++) {
		cin >> data;
		InsertToBinaryTree(T, data);
	}
	PreOrderTraverse(T);
	cout << endl;
	InOrderTraverse(T);
	cout << endl;
	PostOrderTraverse(T);
	cout << endl;
	int key;
	cin >> key;
	cout << SearchKey(T, key) << endl;
	cin >> key; 
	cout << SearchKey(T, key) << endl;
	int insertKey;
	cin >> insertKey;
	InsertToBinaryTree(T,insertKey);
	PreOrderTraverse(T);
	cout << endl;
	InOrderTraverse(T);
	cout << endl;
	PostOrderTraverse(T);
	cout << endl;
	InOrderTraverse2(T);
	LTB(T);
	SwapChildNode(T);
	PreOrderTraverse(T);
	cout << endl;
	InOrderTraverse(T);
	cout << endl;
	PostOrderTraverse(T);
	cout << endl;
	SwapChildNode(T);
	PreOrderTraverse(T);
	cout << endl;
	InOrderTraverse(T);
	cout << endl;
	PostOrderTraverse(T);
	cout << endl;
	cout << Depth(T) << endl;
	cout << NodeNumber(T) << endl;
	return 0;
}

8608 实现二叉排序树的各种算法(2)

时间限制:1000MS  代码长度限制:10KB
提交次数:2559 通过次数:1396

题型: 编程题   语言: G++;GCC

Description

用函数实现如下二叉排序树算法: 
(1) 插入新结点 
(2) 前序、中序、后序遍历二叉树 
(3) 中序遍历的非递归算法 
(4) 层次遍历二叉树 
(5) 在二叉树中查找给定关键字(函数返回值为成功1,失败0) 
(6) 交换各结点的左右子树 
(7) 求二叉树的深度 
(8) 叶子结点数


 

输入格式

第一行:准备建树的结点个数n 
第二行:输入n个整数,用空格分隔 
第三行:输入待查找的关键字 
第四行:输入待查找的关键字 
第五行:输入待插入的关键字
 

输出格式

第一行:二叉树的先序遍历序列 
第二行:二叉树的中序遍历序列 
第三行:二叉树的后序遍历序列 
第四行:查找结果 
第五行:查找结果 
第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列 
第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 
第十行:插入新结点后的二叉树的层次遍历序列 
第十一行~第十三行:第一次交换各结点的左右子树后的先、中、后序遍历序列 
第十四行~第十六行:第二次交换各结点的左右子树后的先、中、后序遍历序列 
第十七行:二叉树的深度 
第十八行:叶子结点数
 

输入样例

7
40 20 60 18 50 56 90
18
35
30
 

输出样例

40 20 18 60 50 56 90
18 20 40 50 56 60 90
18 20 56 50 90 60 40
1
0
40 20 18 30 60 50 56 90
18 20 30 40 50 56 60 90
18 30 20 56 50 90 60 40
18 20 30 40 50 56 60 90
40 20 60 18 30 50 90 56
40 60 90 50 56 20 30 18
90 60 56 50 40 30 20 18
90 56 50 60 30 18 20 40
40 20 18 30 60 50 56 90
18 20 30 40 50 56 60 90
18 30 20 56 50 90 60 40
4
4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值