电容的作用, 电容的物理基础 :
高速电路设计仿真实战 —信号与电源完整性
电容的符号如图2-23所示。
图2-23 电容的符号
电容是一个储存电荷的容器,电容的容值代表着其储存电荷 的能力,对电容容值的定义式为
C=Q /U (2-2)
其中,C是电容的容值,单位是法拉(F);Q是电量,单位是库伦(C);U 是电压,单位是伏特 (V)。
这意味着同样的电压下,电容容值越大,能够储存的电荷就越多。
同样,上面只是一个电容容值的定义式,对于一个电容器来说,其电容的大小跟电压和电 量都没有关系,而是与它本身的结构有关。以我们熟悉的平板电容举例,其容值的大小为
其中,ε0为自由空间介电常数,约为0.089 pF/cm(0.225pF/in);εr为平板之间介质的介电常数(常常会写成Er),就是一个系数,表示其与自由空间介电常数的比值,没有单位;S为平板 的正对面积,单位是m^2;d为平板之间的间距,单位是m。
电容是我们理解信号完整性现象非常重要的一个部分,在式(2-3)中,我们可以看到:介电常数越大,电容越大;平板的正对面积越大,电容越大;平板之间的间距越近,电容越大。 实际上我们平板电容的容值有多大呢? 按照我们常见的参数来看,FR-4板材,4mil的芯板,平面的大小为
电容器也有阻抗这个概念,同样由欧姆定理得出。
由C=Q /U可以看出,当电压变化时,电容两端的电量也会发生变化。这样我们就会得到以下公式为
这个电流并不是直接流过电容器的,而是当电容器两端的电压变化时,电容会重新充、放电,看起来好像有电流流过一样。同时,流过的电流大小跟电压大小没关系,只跟电压变化的快慢有关。 根据式(2-4),我们稍做变形就能得到电容器的阻抗为
式(2-5)中可以看到,阻抗Z跟电压变化的速率有关。这是一个带有时间t的公式,也就 是我们所说的时域中的阻抗。不过一条时域的曲线是无法描述电容的阻抗,它不仅跟时间的 变化有关,同时也跟电压的变化有关。所以至少要加上一个电压随时间变化的曲线,才可以得 到电容的阻抗随着时间变化的关系。
这也是前面所说的时域的局限性,因为时域是现实生活中存在的,人们非常好理解,但是 在处理高频高速的现象时,时域难以描述一些现象。
我们切换至频域中,看看频域中电容的阻抗是什么样子。
时域中的阻抗公式,描述的难点在于需要同时描述一个电压随时间变化的曲线,但是在频 域中,正弦波是唯一存在的波形。电压U的时域表达式变为了Usin(2πf×t)或者Usin(ωt), 其关于t的导数为U×2πf×cos(2πf×t)或者U×ω×cos(ωt),于是式(2-5)变为
可以看到,理想电容的阻抗随着频率的升高而变小。也就是我们平时所说的通交流,阻直流。 理想电容的阻抗特性如图2-24所示