多类分类问题
是指在分类问题中,输出标签有两个以上可能的值,而不仅仅是二分类中的0或1。例如:
-
手写数字识别:不仅仅是区分手写的数字0和1,而是识别0到9这十个数字。
-
疾病诊断:患者可能患有三种或五种不同疾病中的任何一种,这也是一个多类分类问题。
-
药品缺陷检测:制药公司生产的药丸可能有划痕缺陷、变色缺陷或芯片缺陷等不同类型的缺陷,这也是一个多类分类问题。
多类分类与二进制分类的区别
在二进制分类问题中,逻辑回归模型可以用于估计给定特征 X 时,输出标签 y 为1的概率 P(y=1∣X)。然而,在多类分类问题中,输出标签 y 可以有多个可能的值(例如1, 2, 3, 4等),因此需要估计每个可能值的概率。
图示展示了多类分类问题的一个例子:
-
左图:
-
横轴 x1 和纵轴 x2 表示特征空间。
-
圆圈(○)代表第一类,叉号(×)代表第二类。
-
决策边界将特征空间分为两个区域,分别对应两个类别。
-
箭头和标签指示了每个类别的区域。
-
-
右图:
-
同样使用横轴 x1 和纵轴 x2 表示特征空间。
-
叉号(×)、圆圈(○)、方块(□)和三角形(△)分别代表四个不同的类别。
-
决策边界将特征空间分为四个区域,分别对应四个类别。
-
每个区域都有相应的概率 P(y=1∣X)、P(y=2∣X)、P(y=3∣X) 和 P(y=4∣X)。
-
总结
多类分类问题与二进制分类问题的主要区别在于输出标签的数量。在多类分类问题中,需要估计每个可能输出标签的概率,并使用决策边界将特征空间划分为多个区域,每个区域对应一个类别。通过这种方式,可以处理更复杂的分类任务,如手写数字识别、疾病诊断和药品缺陷检测等。