整理过的awesome系列项目:
- GitHub:车道线检测最全资料集锦
- GitHub:目标检测最全论文集锦
- GitHub:TensorFlow最全资料集锦
- GitHub:图像分类最全资料集锦
- GitHub:图像分割最全资料集锦
- GitHub:目标跟踪最全资料集锦
本文就给大家推荐一个人群密度估计(Crowd Counting)的最全资料项目:Awesome-Crowd-Counting。
https://github.com/gjy3035/Awesome-Crowd-Counting
Awesome-Crowd-Counting
该项目主要包含以下内容:
- 代码
- 数据集
- 论文
- 排行榜
代码
原作者 Junyu Gao 开源了一个基于PyTorch的人群密度估计库,其名称为:Crowd Counting Code Framework,缩写为 C^3 Framework。该库可以在多种主流数据集上测试,提供很棒的baselines。
https://github.com/gjy3035/C-3-Framework
注:原作者Junyu Gao在CVPR 2019上发表了一篇人群密度估计相关的论文(果然是大佬)。感兴趣的同学可以看一下:
《Learning from Synthetic Data for Crowd Counting in the Wild》
https://arxiv.org/abs/1903.03303
数据集
下面的数据集都是经典常用的,原文中都提供了下载链接,整理的很用心。
- GCC Dataset
- UCF-QNRF Dataset
- ShanghaiTech Dataset
- WorldExpo’10 Dataset
- UCF CC 50 Dataset
- Mall Dataset
- UCSD Dataset
- SmartCity Dataset
- AHU-Crowd Dataset
论文
论文分arXiv上的论文和已发表的顶会/顶刊论文(如CVPR、AAAI、T-PAMI、WACV、ACCV、TIP、ECCV和IJCAI等)
arXiv上的论文
2019 顶会/顶刊论文
2018 顶会/顶刊论文
注:还有2017、2016、2015及以后的论文,此处省略
排行榜
排行榜:不同数据集上不同算法的实验结果。
ShanghaiTech Part A 数据集
ShanghaiTech Part B 数据集
UCF-QNRF 数据集
WorldExpo’10 数据集