深度学习卷积神经网络_如何使用南瓜霜霉病数据集 建立基于深度学习Yolo南瓜病害检测

深度学习卷积神经网络_如何使用南瓜霜霉病数据集 建立基于深度学习Yolo南瓜病害检测


以下文字及代码仅供参考。
在这里插入图片描述
基于深度学习YOLO(You Only Look Once)目标检测算法,使用南瓜霜霉病数据集建立一个南瓜病害检测系统,

从数据准备、模型选择与训练到推理的全流程进行详细说明,并附上代码示例。

在这里插入图片描述

1. 数据准备

南瓜霜霉病数据集通常包括标注了南瓜叶片及其病害区域的图片。如果你已经有标注好的数据集,可以直接跳过这一步。如果没有,需要先对数据进行标注。
在这里插入图片描述

1.1 数据格式转换

YOLO要求输入数据为特定格式:

  • 图片文件夹:images/
  • 标注文件夹:labels/
    • 每个图片对应一个 .txt 文件,包含目标框信息。
    • 格式:class x_center y_center width height(归一化值)

可以使用工具如 LabelImgCVAT 对数据集进行标注。

1.2 数据划分

将数据集划分为训练集、验证集和测试集,例如:

  • 训练集:80%
  • 验证集:10%
  • 测试集:10%

创建 train.txtval.txt 文件,分别列出训练和验证集的图片路径。


2. 环境搭建

确保安装了必要的依赖库:

pip install torch torchvision opencv-python matplotlib

我们可以使用 Ultralytics 提供的 YOLOv5 实现,它简单易用且功能强大。

克隆 YOLOv5 仓库:

git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt

3. 数据配置

在 YOLOv5 中,创建一个 YAML 文件来定义数据集路径和类别。

创建 pumpkin.yaml 文件:

# pumpkin.yaml
train: /path/to/train/images
val: /path/to/val/images

# 类别数量
nc: 1

# 类别名称
names: ['frost_mold']

4. 模型训练

使用 YOLOv5 进行模型训练。

4.1 配置超参数

默认情况下,YOLOv5 提供了一些预训练权重(如 yolov5s.pt),可以选择适合的模型大小(s/m/l/x)。

运行训练命令:

python train.py --img 640 --batch 16 --epochs 50 --data pumpkin.yaml --weights yolov5s.pt

参数说明:

  • --img 640:输入图像大小。
  • --batch 16:批量大小。
  • --epochs 50:训练轮数。
  • --data pumpkin.yaml:数据配置文件。
  • --weights yolov5s.pt:预训练权重。

训练完成后,最佳模型会保存在 runs/train/exp/weights/best.pt


5. 模型推理

使用训练好的模型对新图片进行预测。

5.1 推理代码
from PIL import Image
import cv2
import torch

# 加载模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='runs/train/exp/weights/best.pt')

# 加载测试图片
img_path = 'test_image.jpg'
img = cv2.imread(img_path)

# 推理
results = model(img)

# 显示结果
results.show()  # 可视化结果
results.save()  # 保存结果到文件夹
5.2 批量推理

如果需要对多个图片进行推理,可以使用循环:

import os

# 测试图片文件夹
test_dir = 'test_images/'
output_dir = 'output/'

os.makedirs(output_dir, exist_ok=True)

for img_name in os.listdir(test_dir):
    img_path = os.path.join(test_dir, img_name)
    img = cv2.imread(img_path)
    
    # 推理
    results = model(img)
    
    # 保存结果
    output_path = os.path.join(output_dir, img_name)
    results.save(output_path)

6. 性能评估

可以使用验证集评估模型性能:

python val.py --data pumpkin.yaml --weights runs/train/exp/weights/best.pt

输出指标包括 mAP(mean Average Precision)、Precision 和 Recall。

仅供参考。我的同学。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值