深度学习 pytorch 利用CTSDG算法,构建基于生成对抗网络 的GAN图像背景擦除与涂鸦修复 生成对抗网络 图像修复 pyqt5界面

深度学习 pytorch 利用CTSDG算法,构建基于生成对抗网络 的GAN图像背景擦除与涂鸦修复 生成对抗网络 图像修复 pyqt5界面


以下文字及代码仅供参考。

GAN图像背景擦除与涂鸦修复 生成对抗网络 图像修复 CTSDG算法 pytorch深度学习+ pyqt5界面
在这里插入图片描述

1
在这里插入图片描述
基于CTSDG算法的GAN图像背景擦除与涂鸦修复,涉及到深度学习模型的训练、测试以及图形用户界面(GUI)的设计。以下是详细的代码示例和步骤说明。仅供参考。

1. 环境准备

确保安装了必要的库:

pip install torch torchvision pyqt5 opencv-python numpy pillow

在这里插入图片描述

2. CTSDG算法实现

2.1 数据集准备

假设你已经有了用于训练的数据集,数据集应包含原始图像和对应的掩码图像(表示需要修复的区域)。
在这里插入图片描述

2.2 模型定义

model.py 文件中定义生成器和判别器网络:

import torch
import torch.nn as nn

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        # 定义生成器网络结构
        self.main = nn.Sequential(
            # 添加卷积层、激活函数等
        )

    def forward(self, x):
        return self.main(x)

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        # 定义判别器网络结构
        self.main = nn.Sequential(
            # 添加卷积层、激活函数等
        )

    def forward(self, x):
        return self.main(x)

在这里插入图片描述

2.3 训练过程

train.py 文件中编写训练逻辑:

import torch.optim as optim
from model import Generator, Discriminator
from dataset import ImageDataset
from torch.utils.data import DataLoader

# 初始化生成器和判别器
generator = Generator()
discriminator = Discriminator()

# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))

# 加载数据集
dataset = ImageDataset('path/to/dataset')
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)

# 训练循环
for epoch in range(num_epochs):
    for i, (images, masks) in enumerate(dataloader):
        # 训练判别器
        optimizer_D.zero_grad()
        real_labels = torch.ones(images.size(0), 1)
        fake_labels = torch.zeros(images.size(0), 1)
        
        outputs = discriminator(images)
        d_loss_real = criterion(outputs, real_labels)
        
        fake_images = generator(images, masks)
        outputs = discriminator(fake_images.detach())
        d_loss_fake = criterion(outputs, fake_labels)
        
        d_loss = d_loss_real + d_loss_fake
        d_loss.backward()
        optimizer_D.step()
        
        # 训练生成器
        optimizer_G.zero_grad()
        outputs = discriminator(fake_images)
        g_loss = criterion(outputs, real_labels)
        g_loss.backward()
        optimizer_G.step()
        
        print(f'Epoch [{epoch}/{num_epochs}], Step [{i}/{len(dataloader)}], D_loss: {d_loss.item()}, G_loss: {g_loss.item()}')

3. GUI设计

使用PyQt5创建交互式界面,在 gui.py 文件中编写:

import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget, QLabel, QFileDialog
from PyQt5.QtGui import QPixmap
import cv2
from PIL import Image
from model import Generator

class App(QMainWindow):
    def __init__(self):
        super().__init__()
        self.title = 'CTSDG图像修复'
        self.left = 10
        self.top = 10
        self.width = 640
        self.height = 480
        self.initUI()
    
    def initUI(self):
        self.setWindowTitle(self.title)
        self.setGeometry(self.left, self.top, self.width, self.height)
        
        self.load_button = QPushButton('图片选择', self)
        self.load_button.move(50, 50)
        self.load_button.clicked.connect(self.load_image)
        
        self.doodle_button = QPushButton('涂鸦', self)
        self.doodle_button.move(150, 50)
        self.doodle_button.clicked.connect(self.doodle_image)
        
        self.restore_button = QPushButton('修复', self)
        self.restore_button.move(250, 50)
        self.restore_button.clicked.connect(self.restore_image)
        
        self.image_label = QLabel(self)
        self.image_label.move(50, 100)
        
        self.show()
    
    def load_image(self):
        options = QFileDialog.Options()
        file_name, _ = QFileDialog.getOpenFileName(self, "QFileDialog.getOpenFileName()", "", "Images (*.png *.xpm *.jpg)", options=options)
        if file_name:
            pixmap = QPixmap(file_name)
            self.image_label.setPixmap(pixmap)
            self.image_path = file_name
    
    def doodle_image(self):
        # 实现涂鸦功能
        pass
    
    def restore_image(self):
        # 加载预训练模型
        generator = Generator()
        generator.load_state_dict(torch.load('path/to/pretrained_model.pth'))
        generator.eval()
        
        # 读取并处理图像
        image = cv2.imread(self.image_path)
        mask = cv2.imread('path/to/mask.png', 0)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = Image.fromarray(image)
        mask = Image.fromarray(mask)
        
        # 转换为张量并进行前向传播
        image_tensor = preprocess(image).unsqueeze(0)
        mask_tensor = preprocess(mask).unsqueeze(0)
        with torch.no_grad():
            restored_image = generator(image_tensor, mask_tensor)
        
        # 将结果转换回图像并显示
        restored_image = postprocess(restored_image)
        restored_pixmap = QPixmap.fromImage(convert_to_qimage(restored_image))
        self.image_label.setPixmap(restored_pixmap)

if __name__ == '__main__':
    app = QApplication(sys.argv)
    ex = App()
    sys.exit(app.exec_())

4. 辅助函数

utils.py 文件中编写辅助函数,如图像预处理、后处理和格式转换等:

import cv2
import numpy as np
from PIL import Image
from PyQt5.QtGui import QImage

def preprocess(image):
    # 图像预处理
    pass

def postprocess(image):
    # 图像后处理
    pass

def convert_to_qimage(pil_image):
    # 将PIL图像转换为QImage
    data = pil_image.tobytes("raw", "RGB")
    qimage = QImage(data, pil_image.size[0], pil_image.size[1], QImage.Format_RGB888)
    return qimage

5. 运行项目

确保所有文件和目录正确配置后,运行 gui.py 文件启动应用程序:

python gui.py

通过上述步骤,tx同学呀你可以构建一个完整的基于CTSDG算法的GAN图像背景擦除与涂鸦修复项目,并通过PyQt5提供用户友好的交互界面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值