深度学习 pytorch 利用CTSDG算法,构建基于生成对抗网络 的GAN图像背景擦除与涂鸦修复 生成对抗网络 图像修复 pyqt5界面
以下文字及代码仅供参考。
GAN图像背景擦除与涂鸦修复 生成对抗网络 图像修复 CTSDG算法 pytorch深度学习+ pyqt5界面
1
基于CTSDG算法的GAN图像背景擦除与涂鸦修复,涉及到深度学习模型的训练、测试以及图形用户界面(GUI)的设计。以下是详细的代码示例和步骤说明。仅供参考。
1. 环境准备
确保安装了必要的库:
pip install torch torchvision pyqt5 opencv-python numpy pillow
2. CTSDG算法实现
2.1 数据集准备
假设你已经有了用于训练的数据集,数据集应包含原始图像和对应的掩码图像(表示需要修复的区域)。
2.2 模型定义
在 model.py
文件中定义生成器和判别器网络:
import torch
import torch.nn as nn
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# 定义生成器网络结构
self.main = nn.Sequential(
# 添加卷积层、激活函数等
)
def forward(self, x):
return self.main(x)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
# 定义判别器网络结构
self.main = nn.Sequential(
# 添加卷积层、激活函数等
)
def forward(self, x):
return self.main(x)
2.3 训练过程
在 train.py
文件中编写训练逻辑:
import torch.optim as optim
from model import Generator, Discriminator
from dataset import ImageDataset
from torch.utils.data import DataLoader
# 初始化生成器和判别器
generator = Generator()
discriminator = Discriminator()
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
# 加载数据集
dataset = ImageDataset('path/to/dataset')
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
# 训练循环
for epoch in range(num_epochs):
for i, (images, masks) in enumerate(dataloader):
# 训练判别器
optimizer_D.zero_grad()
real_labels = torch.ones(images.size(0), 1)
fake_labels = torch.zeros(images.size(0), 1)
outputs = discriminator(images)
d_loss_real = criterion(outputs, real_labels)
fake_images = generator(images, masks)
outputs = discriminator(fake_images.detach())
d_loss_fake = criterion(outputs, fake_labels)
d_loss = d_loss_real + d_loss_fake
d_loss.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
outputs = discriminator(fake_images)
g_loss = criterion(outputs, real_labels)
g_loss.backward()
optimizer_G.step()
print(f'Epoch [{epoch}/{num_epochs}], Step [{i}/{len(dataloader)}], D_loss: {d_loss.item()}, G_loss: {g_loss.item()}')
3. GUI设计
使用PyQt5创建交互式界面,在 gui.py
文件中编写:
import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget, QLabel, QFileDialog
from PyQt5.QtGui import QPixmap
import cv2
from PIL import Image
from model import Generator
class App(QMainWindow):
def __init__(self):
super().__init__()
self.title = 'CTSDG图像修复'
self.left = 10
self.top = 10
self.width = 640
self.height = 480
self.initUI()
def initUI(self):
self.setWindowTitle(self.title)
self.setGeometry(self.left, self.top, self.width, self.height)
self.load_button = QPushButton('图片选择', self)
self.load_button.move(50, 50)
self.load_button.clicked.connect(self.load_image)
self.doodle_button = QPushButton('涂鸦', self)
self.doodle_button.move(150, 50)
self.doodle_button.clicked.connect(self.doodle_image)
self.restore_button = QPushButton('修复', self)
self.restore_button.move(250, 50)
self.restore_button.clicked.connect(self.restore_image)
self.image_label = QLabel(self)
self.image_label.move(50, 100)
self.show()
def load_image(self):
options = QFileDialog.Options()
file_name, _ = QFileDialog.getOpenFileName(self, "QFileDialog.getOpenFileName()", "", "Images (*.png *.xpm *.jpg)", options=options)
if file_name:
pixmap = QPixmap(file_name)
self.image_label.setPixmap(pixmap)
self.image_path = file_name
def doodle_image(self):
# 实现涂鸦功能
pass
def restore_image(self):
# 加载预训练模型
generator = Generator()
generator.load_state_dict(torch.load('path/to/pretrained_model.pth'))
generator.eval()
# 读取并处理图像
image = cv2.imread(self.image_path)
mask = cv2.imread('path/to/mask.png', 0)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
mask = Image.fromarray(mask)
# 转换为张量并进行前向传播
image_tensor = preprocess(image).unsqueeze(0)
mask_tensor = preprocess(mask).unsqueeze(0)
with torch.no_grad():
restored_image = generator(image_tensor, mask_tensor)
# 将结果转换回图像并显示
restored_image = postprocess(restored_image)
restored_pixmap = QPixmap.fromImage(convert_to_qimage(restored_image))
self.image_label.setPixmap(restored_pixmap)
if __name__ == '__main__':
app = QApplication(sys.argv)
ex = App()
sys.exit(app.exec_())
4. 辅助函数
在 utils.py
文件中编写辅助函数,如图像预处理、后处理和格式转换等:
import cv2
import numpy as np
from PIL import Image
from PyQt5.QtGui import QImage
def preprocess(image):
# 图像预处理
pass
def postprocess(image):
# 图像后处理
pass
def convert_to_qimage(pil_image):
# 将PIL图像转换为QImage
data = pil_image.tobytes("raw", "RGB")
qimage = QImage(data, pil_image.size[0], pil_image.size[1], QImage.Format_RGB888)
return qimage
5. 运行项目
确保所有文件和目录正确配置后,运行 gui.py
文件启动应用程序:
python gui.py
通过上述步骤,tx同学呀你可以构建一个完整的基于CTSDG算法的GAN图像背景擦除与涂鸦修复项目,并通过PyQt5提供用户友好的交互界面。