如何用于AI模型训练
文章目录
医疗数据的猫狗皮肤病医疗数据集AI模型训练
di:03
10,000 只宠物
– 7 种宠物疾病和 4 种猫皮肤病的图像
500,000 张宠物(狗和猫)图片
250,000 张疾病图像
如何用于AI模型训练

1

1

1

1

1

训练一套用于猫狗皮肤病诊断的AI模型涉及多个步骤,包括数据准备、环境搭建、模型选择与配置、训练过程以及性能评估。
示例代码,
1. 数据准备
文件结构
确保你的数据集文件结构如下:
pet_skin_disease_dataset/
├── images/
│ ├── dog/
│ └── cat/
└── labels/
├── dog/
└── cat/
每张图像对应一个标签文件(可以是分类标签或边界框标注),根据你的具体需求进行调整。
类别映射文件(classes.txt)
创建一个 classes.txt
文件,列出所有疾病类别。例如:
disease1
disease2
...
cat_skin_disease1
cat_skin_disease2
...
2. 环境搭建
安装必要的依赖包:
pip install torch torchvision torchaudio
git clone https://github.com/pytorch/vision.git
cd vision
pip install -e .
3. 数据预处理
创建自定义Dataset类以加载和预处理图像数据。
import os
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
class PetSkinDiseaseDataset(Dataset):
def __init__(self, img_dir, transform=None):
self.img_dir = img_dir
self.transform = transform
self.images = []
self.labels = []
for label in os.listdir(img_dir):
path = os.path.join(img_dir, label)
if not os.path.isdir(path):
continue
for img_name in os.listdir(path):
if img_name.endswith('.jpg') or img_name.endswith('.png'):
self.images.append(os.path.join(path, img_name))
self.labels.append(label)
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = self.images[idx]
image = Image.open(img_path).convert("RGB")
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
4. 模型选择与配置
我们可以使用ResNet作为基础模型,并对其进行微调以适应我们的任务。
import torchvision.models as models
import torch.nn as nn
model = models.resnet50(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(classes)) # classes为你的疾病类别数
5. 训练过程
数据加载器
transform = transforms.Compose([
transforms.Resize((224, 224)), # 调整尺寸以适应模型输入要求
transforms.ToTensor(),
])
dataset = PetSkinDiseaseDataset(img_dir='path/to/pet_skin_disease_dataset/images', transform=transform)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
训练循环
import torch.optim as optim
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(epochs):
model.train()
running_loss = 0.0
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss/len(train_loader.dataset)}")
6. 性能评估
在验证集上评估模型性能:
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the model on the validation images: {100 * correct / total}%')
7. 构建基于深度学习的宠物皮肤病诊断系统
你可以进一步构建一个Web应用来展示预测结果,或者开发一个桌面应用程序来处理用户上传的宠物皮肤图像并输出诊断结果。
训练用于猫狗皮肤病诊断的AI模型。。