前言
针对对轨迹预测高精度的要求以及路径规划、动态避障决策优化的需求,我们需要研究一种利用 LSTM 强大的时序特征捕获能力,充分利用车辆历史运动数据中的历史时序信息,精准预测未来运动轨迹,为无人驾驶系统提供可靠的决策依据。同时结合 APF 基于环境实时生成无碰撞路径的优势,APF在考虑目标引力与障碍物斥力的基础上,根据道路障碍物等实时道路状态灵活调整权重,实现高效路径规划与动态避障。最后通过 LSTM 与 APF 的深度融合,更能整合历史道路状态与当下环境信息,将时序预测与物理约束相结合,降低无人驾驶汽车碰撞风险,生成平滑、安全且符合实际道路情况的行驶轨迹,提升无人驾驶系统在雨雾天气、交通拥堵、行人横穿等复杂场景下的决策能力与适应性。
LSTM(长短期记忆网络)与APF(人工势场法):
针对项目中无人驾驶轨迹预测、路径规划、动态避障、决策优化的需求。
我们通过摄像头实时采集道路交通参与者(行人、障碍物等)的信息,通过LSTM(长短期记忆网络)与APF(人工势场法)算法进行未来轨迹预测,实时避开突然出现的障碍物,应对交通参与者的不规则运动,更好的结合历史数据和环境感知,生成契合当前道路情况的驾驶决策。
LSTM(长短期记忆网络)
首先考虑到LSTM能捕获车辆历史运动的时序特征(位置和时间),预测未来的轨迹。作为一种特殊的循环神经网络(RNN),通过输入门、遗忘门和输出门的门控机制,可以很好的捕获时间序列中的长期依赖信息,可以为之后实时的无人驾驶汽车运动轨迹提供准确的预测。
1. 门控机制
遗忘门:决定历史信息的遗忘程度ft=σ(Wf⋅[ht-1,xt]+bf)
输入门:控制当前输入的信息存储it=σ(Wi⋅[ht-1,xt]+bi)C~t=tanh(WC⋅[ht-1,xt]+bC)
输出门:确定最终输出的信息ot=σ(Wo⋅[ht-1,xt]+bo)ht=ot⋅tanh(Ct)
其中:
σ 为 Sigmoid 激活函数;tanh 为双曲正切激活函数;
\(W_f,W_i,W_C,W_(o\) )为各门将的权重矩阵,\(b_f,b_i,b_C,b_(o\) )为偏置项;
\(h_({t-1}\) )为上一时刻隐藏状态,\(x_(t\)) 为当前时刻输入(如车辆位置坐标 \((x,y)\)、速度 v 等)。
2. 细胞状态更新
(C_t= f_t⋅C_{t-1} + i_t⋅{C}(t))) 通过遗忘门 (f(t) )保留历史有效信息,结合输入门 (i_(t)) 与候选状态 (~{C}(t) )更新细胞状态 (C(t)),最终输出隐藏状态 (h_(t) )用于轨迹预测。
3. 轨迹预测输出
将 LSTM 的隐藏状态映射到未来轨迹坐标(以二维平面为例):(hat{x}{t+k} ,hat{y}{t+k} = {Linear}(h_t )) 其中 ({Linear}) 为线性层,输出未来 k 时刻的位置预测值 ((hat{x}{t+k} ,hat{y}{t+k} ))。
APF(人工势场)
然后就APF基于能根据当前环境生成无碰撞路径的优势。利用目标点产生引力,吸引物体靠近;障碍物产生斥力,排斥物体远离的原理。通过计算无人驾驶汽车所受的合力,确定无人驾驶汽车的运动方向和速度,规划出一条既能避让障碍物又能到达目的地的路径。在LSTM路径预测下,APF跟关注当下道路情况,根据当前位置、目标位置、障碍物位置以及自身速度、加速度等属性动态调整权重。
合力计算:
Ftotal=Fatt+Frep
引力场(目标点pgoalpgoal):
Fatt=katt⋅∥p-pgoal∥2⋅n^goal
katt: 引力增益系数
n^goal: 指向目标点的单位向量
斥力场(障碍物pobs):
Frep={krep(d/1-d0/1)d2/1⋅n^obs0 if d≤d0
0 0 if d>d0
d=∥p-pobs∥: 与障碍物距离
d0: 斥力影响阈值
n^obs: 远离障碍物的单位向量
动态权重调整(融合LSTM预测):
katt,krep=f(ht,v,a)
权重系数由LSTM隐藏状态ht和当前速度v、加速度a动态调整。
3. 运动控制(物理约束)
加速度决策:
a=mFtotal(牛顿第二定律)
m: 车辆质量
速度更新(非holonomic约束):
vt+1=vt+a⋅Δtθt+1=θt+ω⋅Δt
ω: 角速度(由合力方向决定)
Δt: 时间步长
最后通过LSTM和APF结合,利用LSTM更好的关注历史道路状态,并结合APF当下道路状态分析,融合时序预测和物理约束,大幅度降低碰撞风险,生成更平滑的行驶轨迹,更好地应对复杂的道路场景(如雨雾天气、交通拥堵、行人横穿等)
4. 多模态融合(LSTM + APF)
轨迹平滑优化:
pt+1=α⋅p^t+1+(1-α)⋅(pt+vtΔt+21aΔt2)
α: 融合系数(权衡预测与物理约束)
Pytorch实现
1. 环境设置与PyTorch模型定义
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# 环境参数(与之前相同)
GRID_SIZE = 20
START = (1, 1)
GOAL = (18, 18)
OBSTACLES = [(5, 5), (10, 10), (15, 15)]
# APF参数
K_ATT = 0.5
K_REP = 1.0
D0 = 3.0
# LSTM参数
TIME_STEPS = 5
HIDDEN_DIM = 16
2. PyTorch LSTM模型定义
class LSTMPredictor(nn.Module):
def __i