深度学习目标检测算法 YOLOv8训练卫星图像中火点火灾和烟雾数据集检测的模型 识别卫星图像中的火点烟雾检测
文章目录
以下文字及代码仅供参考。
卫星图像火点烟雾检测数据集,
类别 | 标注框数量 |
---|---|
Smoke(烟雾) | 1311 |
Wildfire(火点) | 22138 |
总计:
- 图片总数:30480张
-两种标注:YOLO和VOC
1
使用深度学习模型对卫星图像中的火点和烟雾进行检测,采用YOLOv8作为目标检测框架。YOLO格式和VOC格式的标注文件,我们将直接使用YOLO格式进行训练。
仅供参考
1. 数据集准备
假设你的数据集结构如下:
satellite_fire_smoke/
├── images/
│ ├── train/
│ │ ├── img1.jpg
│ │ └── ...
│ ├── val/
│ │ ├── img1.jpg
│ │ └── ...
│ └── test/
│ ├── img1.jpg
│ └── ...
└── labels/
├── train/
│ ├── img1.txt
│ └── ...
├── val/
│ ├── img1.txt
│ └── ...
└── test/
├── img1.txt
└── ...
data_fire_smoke.yaml
data_fire_smoke.yaml
文件内容示例:
train: ./satellite_fire_smoke/images/train/
val: ./satellite_fire_smoke/images/val/
nc: 2 # 类别数量:Smoke 和 Wildfire
names: ['Smoke', 'Wildfire']
确保每个标签文件的内容符合YOLO格式,即每行包含一个对象的类别ID、中心点x, y坐标(归一化到0-1),宽度和高度(同样归一化)。
2. 安装依赖库
确保安装了必要的库:
pip install ultralytics opencv-python-headless tensorboard
3. 模型训练
创建一个Python脚本来开始训练过程。这里我们以YOLOv8为例说明如何训练模型。
训练脚本
from ultralytics import YOLO
def main_train():
# 加载预训练的YOLOv8n模型或从头开始定义模型
model = YOLO('yolov8n.yaml') # 或者直接加载预训练权重,如 'yolov8n.pt'
results = model.train(
data='./data_fire_smoke.yaml',
epochs=100, # 根据需要调整
imgsz=640,
batch=16,
project='./runs/detect',
name='fire_smoke_detection',
optimizer='SGD',
device='0', # 使用GPU编号
save=True,
cache=True,
verbose=True,
)
if __name__ == '__main__':
main_train()
4. 推理与结果可视化
训练完成后,我们可以利用训练好的模型对新图片进行预测,并将结果可视化。
推理脚本
import cv2
from PIL import Image
from ultralytics import YOLO
model = YOLO('./runs/detect/fire_smoke_detection/weights/best.pt')
def detect_objects(image_path):
results = model.predict(source=image_path)
img = cv2.imread(image_path)
for result in results:
boxes = result.boxes.numpy()
for box in boxes:
r = box.xyxy
x1, y1, x2, y2 = int(r[0]), int(r[1]), int(r[2]), int(r[3])
label_id = int(box.cls)
label = result.names[label_id]
confidence = box.conf
if confidence > 0.5: # 设置置信度阈值
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2) # 绘制矩形框
cv2.putText(img, f'{label} {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
return img
# 示例调用
result_image = detect_objects('your_test_image.jpg') # 确保测试图像路径正确
Image.fromarray(cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)).show() # 使用PIL显示图像
5. 可视化界面
为了监控训练过程,可以使用TensorBoard。在训练脚本中添加 tensorboard=True
参数,然后运行以下命令启动TensorBoard:
tensorboard --logdir runs/
然后在浏览器中访问 http://localhost:6006
查看训练进度和结果。
训练YOLOv8模型用于卫星图像中的火点和烟雾检测涉及多个步骤,包括数据准备、环境搭建、配置超参数、训练模型、进行推理及性能评估。以下是详细的指南和代码示例:
1. 数据准备
格式转换
假设你的数据集包含两种标注格式(YOLO和VOC),我们将主要使用YOLO格式。如果需要从VOC转换为YOLO格式,可以编写一个简单的脚本完成转换。
import xml.etree.ElementTree as ET
import os
def convert_voc_to_yolo(voc_annot_path, yolo_annot_path, img_width, img_height):
tree = ET.parse(voc_annot_path)
root = tree.getroot()
with open(yolo_annot_path, 'w') as f:
for member in root.findall('object'):
class_name = member[0].text
if class_name == "Smoke":
class_id = 0
elif class_name == "Wildfire":
class_id = 1
x_min = int(member.find('bndbox/xmin').text)
y_min = int(member.find('bndbox/ymin').text)
x_max = int(member.find('bndbox/xmax').text)
y_max = int(member.find('bndbox/ymax').text)
x_center = ((x_min + x_max) / 2.0) / img_width
y_center = ((y_min + y_max) / 2.0) / img_height
width = (x_max - x_min) / img_width
height = (y_max - y_min) / img_height
f.write(f"{class_id} {x_center} {y_center} {width} {height}\n")
# 示例调用
convert_voc_to_yolo('path/to/voc_annotation.xml', 'path/to/yolo_annotation.txt', 640, 480)
数据划分
将数据划分为训练集、验证集和测试集。
import random
import shutil
data_dir = 'path/to/dataset'
images = [f for f in os.listdir(os.path.join(data_dir, 'images')) if f.endswith('.jpg')]
random.shuffle(images)
split_ratio = {'train': 0.7, 'val': 0.2, 'test': 0.1}
start_idx = 0
for set_name, ratio in split_ratio.items():
end_idx = start_idx + int(len(images) * ratio)
subset_images = images[start_idx:end_idx]
subset_dir = os.path.join(data_dir, set_name)
os.makedirs(subset_dir, exist_ok=True)
for img in subset_images:
shutil.move(os.path.join(data_dir, 'images', img), os.path.join(subset_dir, 'images', img))
annot_file = img.replace('.jpg', '.txt')
shutil.move(os.path.join(data_dir, 'labels', annot_file), os.path.join(subset_dir, 'labels', annot_file))
start_idx = end_idx
2. 环境搭建
安装YOLOv8及相关依赖:
pip install ultralytics
3. 数据配置
创建data.yaml
文件来定义数据集路径和类别信息:
train: path/to/train/images
val: path/to/val/images
nc: 2
names: ['Smoke', 'Wildfire']
4. 模型训练
使用YOLOv8进行训练:
from ultralytics import YOLO
model = YOLO('yolov8n.yaml') # 或者选择其他预训练模型如'yolov8s.pt', 'yolov8m.pt'等
results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640)
5. 配置超参数
在train()
函数中直接调整超参数,例如学习率、批次大小等:
results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640, batch=16, lr0=0.01)
6. 模型推理
进行单张图片推理:
img_path = 'path/to/image.jpg'
results = model.predict(source=img_path, save=True)
批量推理:
folder_path = 'path/to/folder'
results = model.predict(source=folder_path, save=True)
7. 性能评估
评估模型性能通常涉及到计算准确率、召回率、F1分数等指标。可以在验证集上进行评估:
metrics = model.val()
print(metrics.box.map) # mAP@0.5:0.95
print(metrics.box.map50) # mAP@0.5
print(metrics.box.map75) # mAP@0.75
YOLOv8训练卫星图像中火点和烟雾检测的模型,并对其进行推理和性能评估。仅供参考。