使用YOLOv8模型进行训练和评估_——大量火灾烟雾数据集 46000余张图像,22GB数据量,voc_yolo标注 无人机拍摄,日常场景拍摄 确保计算资源充足烟火火灾火焰数据集训练

使用YOLOv8模型进行训练和评估/——大量火灾烟雾数据集 46000余张图像,22GB数据量,voc/yolo标注 无人机拍摄,日常场景拍摄 确保计算资源充足烟火火灾火焰数据集训练

在这里插入图片描述
火焰,烟雾识别数据集,46000余张图像,22GB数据量,提供voc标注,yolo标注,涵盖高位摄像头,无人机拍摄,日常场景拍摄等多种场景,行,附yolo训练代码在这里插入图片描述

针对火焰和烟雾识别的数据集,我们可以使用YOLOv8模型进行训练和评估。由于数据集较大(46000余张图像,22GB),我们需要确保计算资源充足,并且可能需要调整一些参数以适应大规模数据集的训练需求。

1. 环境准备

首先,确保你已经安装了必要的库和工具。你可以使用以下命令安装所需的库:在这里插入图片描述

pip install torch torchvision
pip install numpy
pip install pandas
pip install matplotlib
pip install opencv-python
pip install pyyaml
pip install ultralytics

2. 数据集准备

假设你的数据集目录结构如下:

fire_smoke_detection_dataset/
├── images/
│   ├── train/
│   ├── val/
│   └── test/
├── labels/
│   ├── train/
│   ├── val/
│   └── test/
└── fire_smoke.yaml

每个图像文件和对应的标签文件都以相同的文件名命名,例如 0001.jpg0001.txt

3. 创建数据集配置文件

你已经有一个 fire_smoke.yaml 文件,内容如下:

train: ../fire_smoke_detection_dataset/images/train
val: ../fire_smoke_detection_dataset/images/val
test: ../fire_smoke_detection_dataset/images/test

nc: 2
names: ['Fire', 'Smoke']

在这里插入图片描述

4. 安装YOLOv8

克隆YOLOv8仓库并安装依赖项:

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

5. 训练模型

由于数据集较大,建议使用GPU进行训练。以下是训练脚本示例:

yolo task=detect mode=train model=yolov8n.yaml data=fire_smoke.yaml epochs=100 imgsz=640 batch=16 workers=8
  • epochs=100:设置训练轮数。
  • imgsz=640:设置输入图像大小。
  • batch=16:设置批量大小。根据你的GPU内存大小调整这个值。
  • workers=8:设置数据加载器的工作线程数。根据你的CPU核心数调整这个值。

6. 评估模型

训练完成后,可以使用YOLOv8的评估脚本来评估模型在验证集上的性能。

yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=fire_smoke.yaml

7. 测试模型

为了评估模型在测试集上的性能,可以使用以下命令:

yolo task=detect mode=test model=runs/detect/train/weights/best.pt data=fire_smoke.yaml

在这里插入图片描述

8. 可视化预测结果

使用以下Python代码来可视化模型的预测结果。

import torch
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 加载模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='runs/detect/train/weights/best.pt')

# 读取图像
image_path = 'fire_smoke_detection_dataset/images/test/0001.jpg'
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# 进行预测
results = model(image)

# 绘制预测结果
results.print()
results.show()

在这里插入图片描述

9. 模型优化

为了进一步优化模型,可以尝试以下方法:

  • 调整超参数:使用不同的学习率、批量大小、权重衰减等。
  • 使用预训练模型:使用预训练的YOLOv8模型作为初始化权重。
  • 增加数据量:通过数据增强或收集更多数据来增加训练集的多样性。
  • 模型融合:使用多个模型进行集成学习,提高预测的准确性。
  • 更复杂的网络结构:尝试使用更大的YOLOv8模型,如 yolov8s, yolov8m, yolov8l, yolov8x
  • 数据增强:使用数据增强技术,如旋转、缩放、翻转等,以增加模型的鲁棒性。
  • 类别平衡:如果某些类别的样本数量不平衡,可以使用类别平衡技术,如过采样或欠采样。
    在这里插入图片描述

10. 总结

通过以上步骤,你可以成功地使用YOLOv8模型对火焰和烟雾识别的数据集进行训练、评估和可视化。如果你有任何问题或需要进一步的帮助,请随时告诉我。

11. 代码示例

以下是一个完整的代码示例,展示了如何从头开始训练和评估YOLOv8模型。

训练脚本
# 克隆YOLOv8仓库
git clone https://github.com/ultralytics/ultralytics
cd ultralytics

# 安装依赖项
pip install -e .

# 训练模型
yolo task=detect mode=train model=yolov8n.yaml data=fire_smoke.yaml epochs=100 imgsz=640 batch=16 workers=8
评估脚本
# 评估模型
yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=fire_smoke.yaml

在这里插入图片描述

测试脚本
# 测试模型
yolo task=detect mode=test model=runs/detect/train/weights/best.pt data=fire_smoke.yaml
可视化脚本
import torch
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 加载模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='runs/detect/train/weights/best.pt')

# 读取图像
image_path = 'fire_smoke_detection_dataset/images/test/0001.jpg'
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# 进行预测
results = model(image)

# 绘制预测结果
results.print()
results.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值