如何使用YOLOv8来训练——9000张图像野生动物检测数据集,并附上详细的训练代码和步骤。

数据集描述

该数据集包含以下信息:

  • 数据量:9000张图像
  • 类别:9类
    • Roe Deer(狍子)
    • Wild Boar(野猪)
    • Squirrel(松鼠)
    • Bird(鸟类)
    • Badger(獾)
    • Raccoon(浣熊)
    • Hare(野兔)
    • Bear(熊)
    • Fox(狐狸)

数据集组织

假设你的数据集目录结构如下:

wildlife_detection_dataset/
├── train/
│   ├── images/
│   └── labels/
├── valid/
│   ├── images/
│   └── labels/
└── data.yaml  # 数据配置文件

其中:

  • train/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值