如何使用语义分割模型(如UNet、SegNet、FCN、SegFormer等)来训练一个包含15000张图像——基建裂缝语义分割数据集,并附上详细的训练代码和步骤

裂缝数据集, 8个 共1.5w张左右
包含有混凝土隧道裂缝数据集,混凝土建筑裂缝数据集,混凝土路面裂缝数据集等

数据集描述

该数据集包含以下信息:

  • 数据量:15000张图像
  • 类别:裂缝(Crack)和背景(Background)
  • 标注:每个图像都有对应的像素级标注文件,通常为PNG格式的掩膜图。

数据集组织

假设你的数据集目录结构如下:

infrastructure_crack_segmentation_dataset/
├── train/
│   ├── images/
│   └── masks/
├── valid/
│   ├── images/
│   └── masks/
└── data.yaml  # 数据配置文件

其中:

  • train/ 包含训练集的图像和对应的掩膜文件。
  • valid/ 包含验证集的图像和对应的掩膜文件。

数据配置文件

虽然语义分割任务通常不需要像目标检测那样的data.yaml配置文件,但如果有特定的配置需要,可以创建一个简单的配置文件来记录类别信息:

classes:
  crack: 1  # 裂缝类别
  background: 0  # 背景类别

数据准备

假设你的数据集已经准备好,并且每个图像都有对应的像素级标注文件(通常是PNG格式的掩膜图)。如果没有,你需要将标注信息转换成像素级的掩膜文件。

安装PyTorch及相关库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值