遥感影像各类油罐检测,共分为外浮顶油罐,封闭顶油罐,球形压力罐,水塔,沉淀罐五种类型,超过26000张影像,采用voc格式标注,512×215尺寸,2GB
使用YOLOv8来训练一个包含超过26000张遥感影像的油罐检测数据集。这个数据集包含5个类别,已标注为VOC格式,可以直接用于模型训练。
数据集描述
数据量:超过26000张影像
类别:
0: 外浮顶油罐(External Floating Roof Tank)
1: 封闭顶油罐(Fixed Roof Tank)
2: 球形压力罐(Spherical Pressure Tank)
3: 水塔(Water Tower)
4: 沉淀罐(Settling Tank)
标注格式:VOC格式
图像尺寸:512×215
数据大小:约2GB
应用场景:遥感影像油罐检测
数据集组织
假设你的数据集目录结构如下:
深色版本
oil_tank_dataset/
├── images/
│ ├── 000001.jpg
│ ├── 000002.jpg
│ └── …
├── annotations/
│ ├── 000001.xml
│ ├── 000002.xml
│ └── …
└── data.yaml # 数据配置文件
数据配置文件
创建或确认data.yaml文件是否正确配置了数据集路径和类别信息:
yaml
深色版本
train: ./images/train/ # 训练集图像路径
val: ./images/val/ # 验证集图像路径
test: ./images/test/ # 测试集图像路径
Classes
nc: 5 # 类别数量
names:
- External Floating Roof Tank
- Fixed Roof Tank
- Spherical Pressure Tank
- Water Tower
- Settling Tank # 类别名称列表
数据集划分
将数据集划分为训练集、验证集和测试集。可以使用以下脚本:
python
深色版本
import os
import random
from shutil import copyfile
定义源目录和目标目录
source_images_dir = ‘./oil_tank_dataset/images’
source_annotations_dir = ‘./oil_tank_dataset/annotations’
target_train_dir = ‘./oil_tank_dataset/images/train’
target_val_dir = ‘./oil_tank_dataset/images/val