使用YOLOv8来训练一个包含500张图像的珊瑚目标检测数据集。这个数据集包含14个类别,已标注为YOLO格式,可以直接用于模型训练。
数据集描述
数据量:500张图像
类别:
0: Arborescent(树状的)
1: Caespitose-a(丛生的-a)
2: Caespitose-b(丛生的-b)
3: Columnar(柱状的)
4: Corymbose(伞房状的)
5: Digitate(指状的)
6: Encrusting(附生的)
7: Foliose(叶状的)
8: Massive-Faviidae(巨型的-海葵科)
9: Massive-Merulinidae(巨型的-梅鲁利亚科)
10: Massive-Mussidae(巨型的-穆斯科科)
11: Massive-Poritidae(巨型的-孔穴科)
12: Solitary(孤立的)
13: Tabular(表状的)
标注格式:YOLO格式
应用场景:珊瑚目标检测
数据集组织
假设你的数据集目录结构如下:
深色版本
coral_detection_dataset/
├── images/
│ ├── train/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ ├── val/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ └── test/
│ ├── 000001.jpg
│ ├── 000002.jpg
│ └── …
├── labels/
│ ├── train/
│ │ ├── 000001.txt
│ │ ├── 000002.txt