如何训练并使用Yolov8训练——施工场地风险状态评估数据集,并提供使用YOLOv8进行训练的详细步骤和代码

如何训练—工地安全行为风险评估数据集 坠落、降落、狭窄、火灾、运输传导,以及危险作业和安全防护作用等。且该数据集均已进行标签处理, 标签格式为json,安全事故类数据集判定 建筑工地安全行为数据集在这里插入图片描述

22w例张图片的施工场地风险状态评估数据集 本数据可用于开发确保劳动者安全和预防危险情况的AI管理技术。针对建筑工地可能发生的安全隐患,以其中发生频率较高的5种事故为对象,进行采样搜集,构建出在多种条件下用于AI学习的数据。 本数据可帮助AI学习判断建筑工地内5大事故类型及注意事项作业的危险情况,且并不是对行动的危险状况判断,而是根据不同情况的客体的存在与否来判断危险状况。 可以通过对建筑工地工人及周边情况的危险情况进行事前感知,来预防现场可能发生的事故,并对事故原因进行人工智能视频分析,制定根源性事故对策。 数据为利用人工智能监控摄像头从2022年收集至今的高达226,000 张施工场地图片,数据格式为jpg。数据类型为工地发生率较高的5种事故,坠落、降落、狭窄、火灾、运输传导,以及危险作业和安全防护作用等。且该数据集均已进行标签处理, 标签格式为json,标签类型为图像分割框。在这里插入图片描述
在这里插入图片描述
介绍这个施工场地风险状态评估数据集,并提供使用YOLOv8进行训练的详细步骤和代码。

数据集介绍

  1. 数据集概述
    数据集名称:施工场地风险状态评估数据集
    图像数量:226,000张图片
    数据用途:用于开发确保劳动者安全和预防危险情况的AI管理技术
    事故类型:5种常见的建筑工地事故类型,包括坠落、降落、狭窄、火灾、运输传导
    其他标签:危险作业和安全防护作用等
    数据来源:利用人工智能监控摄像头从2022年收集至今
    数据格式:JPEG格式
    标签格式:JSON,标签类型为图像分割框
    数据集划分:已划分好训练集、验证集和测试集
  2. 数据集结构
    假设你的数据集已经按照以下结构组织&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值