如何训练—工地安全行为风险评估数据集 坠落、降落、狭窄、火灾、运输传导,以及危险作业和安全防护作用等。且该数据集均已进行标签处理, 标签格式为json,安全事故类数据集判定 建筑工地安全行为数据集
22w例张图片的施工场地风险状态评估数据集 本数据可用于开发确保劳动者安全和预防危险情况的AI管理技术。针对建筑工地可能发生的安全隐患,以其中发生频率较高的5种事故为对象,进行采样搜集,构建出在多种条件下用于AI学习的数据。 本数据可帮助AI学习判断建筑工地内5大事故类型及注意事项作业的危险情况,且并不是对行动的危险状况判断,而是根据不同情况的客体的存在与否来判断危险状况。 可以通过对建筑工地工人及周边情况的危险情况进行事前感知,来预防现场可能发生的事故,并对事故原因进行人工智能视频分析,制定根源性事故对策。 数据为利用人工智能监控摄像头从2022年收集至今的高达226,000 张施工场地图片,数据格式为jpg。数据类型为工地发生率较高的5种事故,坠落、降落、狭窄、火灾、运输传导,以及危险作业和安全防护作用等。且该数据集均已进行标签处理, 标签格式为json,标签类型为图像分割框。
介绍这个施工场地风险状态评估数据集,并提供使用YOLOv8进行训练的详细步骤和代码。
数据集介绍
- 数据集概述
数据集名称:施工场地风险状态评估数据集
图像数量:226,000张图片
数据用途:用于开发确保劳动者安全和预防危险情况的AI管理技术
事故类型:5种常见的建筑工地事故类型,包括坠落、降落、狭窄、火灾、运输传导
其他标签:危险作业和安全防护作用等
数据来源:利用人工智能监控摄像头从2022年收集至今
数据格式:JPEG格式
标签格式:JSON,标签类型为图像分割框
数据集划分:已划分好训练集、验证集和测试集 - 数据集结构
假设你的数据集已经按照以下结构组织&#