如何使用yolov8训练电力类别——安全带佩戴识别数据集 电网人员安全带识别检测数据集 yolo数据集 共3700张 已增强 2类

电网人员安全带识别检测数据集统计表
标签名称 图片数量 边框数量
未系安全带 (Belt_off) 3773 -
系安全带 (Belt_on) 2517 -
总计 6290 -在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
项目结构
深色版本
safety_belt_detection/
├── dataset/
│ ├── images/
│ │ └── *.jpg
│ ├── labels/
│ │ └── *.txt
├── models/
│ └── yolov8/
├── src/
│ ├── train.py
│ ├── predict.py
│ ├── utils.py
├── weights/
│ └── best_model.pt
├── requirements.txt
└── README.md

  1. 安装依赖
    首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:

深色版本
torch
torchvision
numpy
pandas
matplotlib
tqdm
pyyaml
opencv-python
ultralytics
然后,使用以下命令安装依赖:

bash
深色版本
pip install -r requirements.txt
2. 数据集准备
确保你的数据集已经按照以下结构组织:

深色版本
dataset/
├── images/
│ └── *.jpg
├── labels/
│ └── *.txt
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg格式,标签文件是YOLO格式的.txt文件。

  1. 数据集配置
    创建一个数据集类,用于加载和预处理数据。

3.1 src/utils.py
python
深色版本
import os
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image

class SafetyBeltDetectionDataset(Dataset):
def init

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值