桃子分类数据集
数据背景
桃子分类数据集旨在通过深度学习技术对不同大小和成熟度的桃子进行分类。该数据集包含6701张图像,已分为训练集和测试集。数据集类别包括四种不同的桃子类型:个头大但不太成熟、个头大且成熟、个头较小、个头中等。这个数据集可以用于训练和评估分类模型,以实现对桃子的自动分类,从而提高农业生产的效率和质量。
研究意义
提高农业生产效率:通过自动化分类系统,可以快速准确地对桃子进行分类,减少人工劳动,提高生产效率。
提升产品质量:精确的分类有助于确保不同成熟度和大小的桃子在适当的条件下储存和运输,从而提升产品的整体质量。
促进农业智能化:利用深度学习和计算机视觉技术,推动农业生产的智能化和现代化,为农业领域的技术创新提供数据支持。
数据集结构
深色版本
peach_classification_dataset/
├── images/
│ ├── train/
│ │ ├── big_not_mature/
│ │ │ ├── 000001.jpg
│ │ │ ├── 000002.jpg
│ │ │ └── …
│ │ ├── big_mature/
│ │ │ ├── 000001.jpg
│ │ │ ├── 000002.jpg
│ │ │ └── …
│ │ ├── small/
│ │ │ ├── 000001.jpg
│ │ │ ├── 000002.jpg
│ │ │ └── …
│ │ ├── medium/
│ │ │ ├── 000001.jpg
│ │ │ ├── 000002.jpg
│ │ │ └── …
│ ├── test/
│ │ ├── big_not_mature/
│ │ │ ├── 000001.jpg
│ │ │ ├── 000002.jpg
│ │ │ └── …
│ │ ├── big_mature/
│ │ │ ├── 000001.jpg
│ │ │ ├── 000002.jpg
│ │ │ └── …
│ │ ├── small/
│ │ │ ├── 000001.jpg
│ │ │ ├── 000002.jpg
│ │ │ └── …
│ │ ├── medium/
│ │ │ ├── 000001.jpg
│ │ │ ├── 000002.jpg
│ │ │ └── …
├── classes.txt
├── README.txt
├── models/
│ └── resnet50/
├── src/
│ ├── train_classification.py
│ ├── predict_classification.py
│ ├── utils.py
│ ├── dataset.py
├── weights/
│ └── best_model.pth
├── requirements.txt
└── README.md
数据说明
数据集规模:共包含670