使用YOLOv8来训练游泳和溺水检测数据集 实现可视化及评估 直接检测道游泳溺水

如何训练自己的数据集——游泳溺水数据集在这里插入图片描述
图片数量: 1715张图片
标注格式: YOLO txt格式
类别nc: 2
类别名称: [’ Drowning’,’ Swimming’]
实例统计: [[’ Dr owning ’
951],[’ Swimming’
2165] ]在这里插入图片描述
在这里插入图片描述
使用YOLOv8来训练你的游泳和溺水检测数据集。以下是详细的步骤和完整的代码示例。

步骤概述

  1. 安装依赖
  2. 准备数据集
  3. 配置YOLOv8
  4. 训练模型
  5. 可视化评估

1. 安装依赖

首先确保你已经安装了必要的库,特别是ultralytics库,它是YOLOv8的核心库。

pip install ultralytics

2. 准备数据集

假设你的数据集格式符合YOLO的要求,即图像文件夹和对应的标注文件夹。数据集结构应如下所示:

datasets/
├── images/
│   ├── train/
│   │   ├── img1.jpg
│   │   ├── img2.jpg
│   │   └── ...
│   └── val/
│       ├── img1.jpg
│       ├── img2.jpg
│       └── ...
└── labels/
    ├── train/
    │   ├── img1.txt
    │   ├── img2.txt
    │   └── ...
    └── val/
        ├── img1.txt
        ├── img2.jpg
        └── ...

每个.txt文件对应一张图片,内容格式为:

<class_id> <x_center> <y_center> <width> <height>

其中,坐标值都是归一化的(范围在0到1之间)。

3. 配置YOLOv8

创建一个YAML文件来配置数据集路径和类别信息。例如,创建一个名为swimming_drowning.yaml的文件:

train: ../datasets/images/train
val: ../datasets/images/val

nc: 2
names: ['Drowning', 'Swimming']

注意:类别名称应该是 'Drowning''Swimming',而不是 ' Dr owing '' Swimming '

4. 训练模型

编写训练脚本,使用YOLOv8进行训练。以下是完整的训练脚本:

解释

  1. 加载预训练模型:我们从预训练的YOLOv8n模型开始。
  2. 训练模型:使用train方法进行训练。参数包括数据集配置文件路径、训练轮数、图像大小、批量大小、工作线程数和设备。
  3. 评估模型:使用val方法对模型进行评估。
  4. 导出模型:将训练好的模型导出为ONNX格式以便部署。
  5. 可视化评估:使用predict方法在验证集上进行预测,并显示和保存结果。

运行脚本

保存上述脚本到一个Python文件中,例如train_swimming_drowning.py,然后运行该脚本:

python train_swimming_drowning.py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值