自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(894)
  • 资源 (284)
  • 收藏
  • 关注

原创 [环境配置]让sd自动翻译提示词插件sd-webui-prompt-all-in-one安装

任何方式安装,在安装完成后,都需要重新启动 Stable Diffusion WebUI。目录,然后重启 Stable Diffusion WebUI,再重新安装。此过程可能需要几分钟或更久的时间。此过程可能需要几分钟或更久的时间。如果你的WebUI版本低于此版本,你需要更新WebUI。此方法需要你的电脑上安装了 git,如果没有安装,可参考。任何方式,在安装过程中,如果出现错误。安装过程可能需要几分钟或更久的时间,请耐心等待。此方法安装无法一键更新,不推荐!你需要确保你的WebUI版本是。

2023-06-10 08:12:10 239

原创 [环境配置]stable diffusion启动报错cannot import name ‘get_device‘ from ‘basicsr.utils.misc‘

python webui.py启动后报错cannot import name 'get_device' from 'basicsr.utils.misc'找到Lib\site-packages\basicsr\utils\misc.py。

2023-06-09 18:57:00 8

原创 [技术杂谈]显卡天梯图2023年6月更新

数据来源:

2023-06-02 20:24:03 197

原创 [python][gradio]gradio任何代码运行在浏览器显示loading问题解决方法

安装了gradio后运行任何gradio代码后,打开浏览器后都显示loading没反应,这是因为外网原因,修改代码即可解决。打开安装环境中的/site_packages/gradio/themes/utils/fonts.py。

2023-06-02 19:26:13 72 2

原创 [数据集][目标检测]公路落石和滑坡数据集VOC格式-991张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)标注类别名称:["huapo","luoshi"]图片数量(jpg文件个数):494。标注数量(xml文件个数):494。图片数量(jpg文件个数):497。标注数量(xml文件个数):497。标注类别名称:["luoshi"]分为真实场景和SD生成场景。

2023-06-01 22:25:01 356 4

原创 [环境配置]微软商店无法加载页面 显示错误代码0x80131500的解决办法

网上介绍一堆方法结果基本没用,最后发现原来是自己开的梯子导致,所以关闭梯子即可。如何查看自己是否开了梯子或者代理。如果你的使用代理服务器是关闭状态表示没有使用代理,如果是打开状态说明你用了代理。

2023-06-01 18:39:02 17

原创 [数据集][目标检测]目标检测数据集蜜蜂4073张1类别VOC格式

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注类别名称:["basketball"]出品方:未来自主研究中心(FIRC)图片数量(jpg文件个数):7398。标注数量(xml文件个数):7398。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2023-05-31 18:42:32 590

原创 [C++][原创]使用jsoncpp将数据写出labelme的json格式

jsoncpp源码地址:Json::FastWriter jsonWrite;//dict。

2023-05-31 14:18:05 613

原创 [C++][opencv]opencv填充透明色到不规则polygon区域

大家用yolov5-seg分割都知道官方演示分割结果会把分割区域半透明填充到原图里面,那么C++如何实现呢。由于分割点事变动的,所以我们需要用变量控制分割点数。参考文章写的很不错,但是有个毛病,他这个是5点必须是常量,分割时候不一定是5个点,有可能是N个。注意C++new对象后需要及时释放资源不然可能会导致内存泄漏。

2023-05-29 18:59:51 38

原创 [深度学习]stable diffusion的提示词总结

中括号起到了混合的作用,同理,我们还可以用在服装材质、款式、背景玄幻...除了用中括号,另外还可以用and来连接,这是更细致的写法,可以用来规定某一个你想要混合的色彩的权重。小括号代表的是1.1倍,比如Exquisite Crown(精美的皇冠),加上(Exquisite Crown)就代表皇冠这个词语的权重变成1.1倍,(((Exquisite Crown))),代表1.1x1.1x1.1,1.331倍。表示图片效果,带来的改变可以试试,不过也会影响渲染出图的时间,会根据你要求的画面质量延长时间。

2023-05-29 09:59:46 1411

原创 [技术杂谈][原创]如何修改pycharm里面引入虚拟环境的名字

注意这个是改环境在pycharm显示名字,并不对实际虚拟环境造成任何影响,这样只是为了在选择环境时候好查看自己需要切换到哪个虚拟环境。测试是在2023版本,其他版本pycharm类似。有时候我们加入pycharm虚拟环境会变成(2),(3)这样的不方便查看,如下面。现在我们来修改它,首先打开文件-设置-python解释器。右键单击需要修改环境名字。

2023-05-28 07:27:13 27

原创 [环境配置][anaconda]anaconda-navigator一直停留在loading application界面不动

如果你的anaconda安装在D盘比如D:\anaconda3,找到对应文件。修改后可正常开启anaconda navigator.

2023-05-27 21:54:19 17

原创 [数据集][目标检测]目标检测数据集绝缘子缺陷防震锤1688张5类别VOC格式

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)标注类别名称:["flashover","insulator","damaged","fzc","nest"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。绝缘子放电痕迹 flashover count = 1265。图片数量(jpg文件个数):1688。标注数量(xml文件个数):1688。标注规则:对类别进行画矩形框。

2023-05-27 09:02:15 405

原创 [数据集][目标检测]数据集VOC格式绝缘子缺陷检测数据集VOC-4086张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注类别名称:["jueyuanzi","posun","fangdian"]posun 破损处,包括断裂、缺失、破损、破洞。图片数量(jpg文件个数):4086。标注数量(xml文件个数):4086。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2023-05-27 09:01:01 871

原创 [数据集][目标检测]目标检测数据集大白菜数据集VOC格式1557张

重要说明:这个是大白菜数据集,注意是大白菜不是小白菜,由于图片太少截取了20段视频,部分看起来有点重复,但是已经经过文件MD5去重。数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):1557。标注数量(xml文件个数):1557。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2023-05-27 08:57:21 1041

原创 [数据集][目标检测]目标检测数据集黄瓜数据集VOC格式1309张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注类别名称:["cucumber"]图片数量(jpg文件个数):1308。标注数量(xml文件个数):1308。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2023-05-27 08:51:55 602

原创 [C++]octomap安装后测试

测试环境:vs2019代码:if (node!= NULL) {elsex < 20;x++) {y < 20;y++) {z < 20;z++) {x < 30;x++) {y < 30;y++) {z < 30;z++) {结果:

2023-05-25 15:19:34 727

原创 [C++][windows]vcpkg使用教程

之后进入vcpkg目录,双击运行bootstrap-vcpkg.bat会自动下载vcpkg.exe等文件,注意网络可能不好下,这个需要上外网解决。这时候会在“\scripts”目录下,生成nuget配置文件.其中是指vcpkg实际所在目录。或者手动下载随便放一个非中文或者有空格的路径下,比如我直接放D。安装x86的库,以jsoncpp为例。将vcpkg和vs2019取消整合。将D:\vcpkg加入环境变量。

2023-05-25 15:03:10 734

原创 [深度学习]指定GPU训练模型

注意最好放在代码首行,显卡从第0块开始。

2023-05-25 09:02:13 21

原创 [ubuntu]卸载ubuntu18.04显卡驱动报错cuda-libraries-11-4 : Depends: cuda-cudart-11-4

卸载ubuntu18.04上显卡驱动报错:然后怎么也解决不了,最后输入:就解决问题了。

2023-05-22 15:07:06 574

原创 [数据集]visdrone转voc问题

转换后即可用labelImg查看即可,但是经过技术检查,发现train转换后VOC数据集里面有10个标注是存在问题的,这个需要注意删除,不然在训练时候可能会报错。val转换后数据集不存在标注问题。转换脚本,只需要指定目录即可,保存目录不需要提前创建,路径最后带不带斜杠都不影响。

2023-05-19 13:36:17 34

原创 [技术杂谈]暗影精灵6plus设置U盘启动

刚入手一台暗影精灵6plus,但是按F2不能进去BIOS,查了一半天,网上资料都不靠谱。这里记录准确的快捷键。F10可以进去BIOS 里面可以设置虚拟化技术等参数。F9 直接可以选择U盘为启动盘。

2023-05-18 22:18:11 21

原创 [python][gradio]运行gradio代码显示Failed to connect to ec2.gradio.app:22

经过查阅资料发现,应该是端口被占用了,于是。

2023-05-15 09:29:00 37

原创 [python][gradio]写gradio任何代码打开浏览器显示Loading

编写gradio程序时候,发现任何代码运行起来都是一直显示Loading也不报错。于是尝试了各种办法都不行,比如。不知道为啥这个版本就可以,我用的当前最新版本3.30.0不行。(5)怀疑是pycharm问题?cmd操作问题依旧,失败。(2)更换一个虚拟环境然后重新安装gradio,失败。(4)怀疑是网络问题影响?(1)卸载重新安装,失败。(3)降低几个版本,失败。

2023-05-15 09:25:44 265

原创 [数据集][目标检测]篮球数据集VOC格式7398张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。[数据集][目标检测]篮球数据集VOC格式7398张_哔哩哔哩_bilibili。标注类别名称:["basketball"]图片数量(jpg文件个数):7398。标注数量(xml文件个数):7398。使用标注工具:labelImg。标注规则:对类别进行画矩形框。制作单位:未来自主研究中心。

2023-05-14 19:56:40 396 1

原创 [技术杂谈]开源数据集地址汇总

链接1:https://github.com/huggingface/datasets。链接2:https://huggingface.co/datasets。Huggingface数据集(NLP较多)kaggle数据集(最好用的数据集网站)更多数据集平台欢迎大家在评论区补充。

2023-05-11 18:40:13 405

原创 [ubuntu][原创]ubuntu上安装stable-diffusion-webui

执行python webui.py后面操作会自动下载模型,如果下载不了,手动下载对应目录即可。但是很遗憾这个国内很难成功,而且很容易陷入困境,因此需要下面方法。安装:pip install open_clip_torch即可。下载一个anconda并安装,由于过程简单,这个省略,然后。(可选)安装CodeFormer所需的库(面部修复)如果报什么错解决什么错就行了,如果报错。(可选)安装GFPGAN(面部修复)核心思想:环境和源码分开安装。后面缺什么就pip什么。

2023-05-10 18:59:10 526

原创 [深度学习]OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

训练模型经常出现以下错误:解决方法:import os。

2023-05-09 20:33:28 17

原创 [ubuntu][原创]通过apt方式去安装libnccl库

注意:以上均需要注意自己电脑上cuda版本,以免安装错误版本导致出现问题。

2023-05-09 07:16:45 446

原创 [深度学习]stable-diffusion-webui部署后局域网无法访问

当你把stable-diffusion-webui环境安装好后,启动python webui.py后发现,局域网里面是不能访问这个网页的,为了解决这个问题翻阅资料发现解决起来很简单。stable-diffusion-webui/modules/shared.py这个文件,把--listen设置为True,具体看下面代码。增加default=True即可。

2023-05-08 11:05:51 283

原创 [深度学习]stable diffusion官方模型下载地址

由于老忘记下载地址还有官方给的下载地址我也是老找不到,因此放博客备份一下,同时也给有需要的人。

2023-05-07 09:14:47 310

原创 [tesseract-ocr][原创]win7上训练tesseract提示read_params_file: Can‘t open lstm.train

如果你在windows10及其以上版本是没问题的,但是换到win7就不行了,这个可能win7环境变量和win10环境变量搜索规则不一样导致,我们只需要在win7环境变量添加以下目录。注意上面目录要和你实际目录对应起来,我使用的是Tesseract-OCR5.0.1版本。

2023-05-07 08:41:26 14

原创 [c#]对象序列化和反序列化一种方法

C#中序列化和反序列化有很多方法,这里介绍其中一种可以序列化对象的方法。//BinaryFormatter将文件中的数据反序列化出来。//BinaryFormatter将对象序列化到文件中。

2023-05-04 13:48:24 394

原创 [C#]opencvsharp写出视频文件存在问题无法读取

【代码】[C#]opencvsharp写出视频文件存在问题无法读取。

2023-05-04 12:44:36 147

原创 [python][vpython]用vpython实现小球砸弹簧代码

g2 = graph(width=400, height=300, xtitle="时间/s", ytitle="速度/m/s", align="left") # 定义曲线显示窗口。g1 = graph(width=400, height=300, xtitle="时间/s", ytitle="能量/J", align="left") # 定义曲线显示窗口。EK_label = label(text="动能", height=20, opacity=0, box=False) # 定义小球动能标签。

2023-04-30 16:03:50 700

原创 [ubuntu]ubuntu安装aria2及命令行下载文件

j =N Set maximum number of parallel downloads for every static (HTTP/FTP) URL, torrent and metalink. 设置同时分块下载。-s Download a file using N connections. 设置多下载多链接。aria2c -s 10 -x 10 -j 20 -d [保存目录] [下载地址]--http-proxy= 指定http代理。

2023-04-28 07:15:55 31

原创 [paddle]Your machine doesn‘t support AVX, but the installed PaddlePaddle is avx core

windows上安装paddlepaddle报错了,提示。

2023-04-27 22:37:17 34

原创 [深度学习][CenterFusion]关于centerfusion训练注意的要点

注意:由于博主这几天都在复现这个项目,博客的内容的进度也是博主项目复现的进度,如果遇到找不到页面的情况,是由于内容在待审核,过一会儿就出来了。pytorch版本问题:我使用的torch==1.11.0+cu113 torchvision==0.12.0+cu113版本,训练时候会报错torchvision.model.utils找不到,只要改成。python版本问题:我使用的python3.8版本没有任何问题,所以不仅仅是python3.7支持如果你是python3.8也是没问题的。其他安装教程走就行了。

2023-04-27 09:31:11 137

原创 [python][pymc3]anaconda安装pymc3后import提示Using NumPy C-API based implementation for BLAS functions.

文件的存放路径为:C:\Users\你的电脑用户名 ,我使用的ldflags=-lblasc成功解决那个warning.将文档另存为文件名:.theanorc.txt ,文档类型为:所有文件(第二步:在用户目录下放置一个文件。import pymc3后提示。

2023-04-26 16:11:51 37

原创 [C++][PCL]PCL安装后测试代码2

boost::shared_ptrviewer(new pcl::visualization::PCLVisualizer("显示点云"));//设置背景颜色为黑色。// 对点云着色可视化 (red).// 等待直到可视化窗口关闭。// 初始化点云可视化对象。

2023-04-26 15:57:11 336

windows上creativecloud卸载工具

安装adobe creative cloud发现无法卸载,发现官方提供有卸载工具于是下载后果然可以卸载。

2023-06-07

目标检测数据集西红柿数据集VOC格式-1455张.zip

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1455 标注数量(xml文件个数):1455 标注类别数:1 标注类别名称:["tomato"] 每个类别标注的框数: tomato count = 6150 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-06-04

目标检测数据集公路落石和滑坡数据集VOC格式-991张

分为真实场景和SD生成场景 真实场景: 数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):494 标注数量(xml文件个数):494 标注类别数:2 标注类别名称:["huapo","luoshi"] 每个类别标注的框数: huapo count = 183 luoshi count = 351 SD场景: 数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):497 标注数量(xml文件个数):497 标注类别数:1 标注类别名称:["luoshi"] 每个类别标注的框数: luoshi count = 514 数据集介绍地址:bilibili.com/video/BV1Ss4y1i7XZ

2023-06-01

目标检测数据集篮球数据集VOC格式-7398张.zip

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):7398 标注数量(xml文件个数):7398 标注类别数:1 标注类别名称:["basketball"] 每个类别标注的框数: basketball count = 8655 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-05-31

目标检测数据集蜜蜂数据集VOC格式4073.zip

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):4073 标注数量(xml文件个数):4073 标注类别数:1 标注类别名称:["bee"] 每个类别标注的框数: bee count = 4460 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-05-31

目标检测数据集VOC格式工程车辆数据集系列19斗臂车数据集-254张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):254 标注数量(xml文件个数):254 标注类别数:2 标注类别名称:["doubiche","car"] 每个类别标注的框数: doubiche count = 269 car count = 16 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-05-27

目标检测数据集黄瓜数据集VOC格式1309张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1308 标注数量(xml文件个数):1308 标注类别数:1 标注类别名称:["cucumber"] 每个类别标注的框数: cucumber count = 2939 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-05-27

目标检测数据集大白菜数据集VOC格式-1557张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1557 标注数量(xml文件个数):1557 标注类别数:1 标注类别名称:["cabbage"] 每个类别标注的框数: cabbage count = 2309 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:这个是大白菜数据集,注意是大白菜不是小白菜,由于图片太少截取了20段视频,部分看起来有点重复,但是已经经过文件MD5去重。 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-05-21

visdrone-voc格式和yolo格式2种只提供标注xml和txt文件

这是使用官方visdrone转换的voc格式和yolo格式2种,注意由于图片太大需要自己去官方下载,压缩包已经提供下载地址,注意由于转换时候发现有10个训练集图片标注存在错误,因此删除错误标注。大家只需要去官方下载图片放进对应目录即可。voc格式数据集和yolo格式已经用yolov5训练过并得到模型测试过,所以转换数据集不存在问题。如果你觉得有问题可以导入百度easydl进行验证或者打开labelImg进行查验。

2023-05-19

visdrone-coco格式json文件

这是使用官方visdrone转换的coco格式,注意由于转换时候发现有10个训练集图片标注存在错误,因此删除错误标注。大家只需要去官方下载图片放进对应目录即可。coco格式数据集已经用yolox训练过并得到模型测试过,所以转换数据集不存在问题。这里coco格式就官方标准格式,如果你觉得有问题可以导入百度easydl进行验证。

2023-05-19

目标检测数据集VOC格式工程车辆数据集系列18水泥泵车车数据集-604张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):604 标注数量(xml文件个数):604 标注类别数:1 标注类别名称:["shuinibengche"] 每个类别标注的框数: shuinibengche count = 626 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:由于水泥泵车图片难找,截取视频图片,部分可能看起来有点重复,但是都已经经过MD5去重,且已经标注号,介意者请勿购买 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-05-17

目标检测数据集足球数据集VOC格式1847张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1847 标注数量(xml文件个数):1847 标注类别数:1 标注类别名称:["football"] 每个类别标注的框数: football count = 1881 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-05-14

目标检测数据集攀越墙壁数据集VOC格式-701张.zip

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):701 标注数量(xml文件个数):701 标注类别数:1 标注类别名称:["fq"] 每个类别标注的框数: fq count = 747 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-05-01

目标检测数据集防震锤正版数据集VOC格式-2238张

出品方:未来自主研究中心(FIRC) 数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):2238 标注数量(xml文件个数):2238 标注类别数:1 标注类别名称:["fzc"] 每个类别标注的框数: fzc count = 4291 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-04-19

目标检测数据集绝缘子缺陷防震锤1688张5类别VOC格式

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1688 标注数量(xml文件个数):1688 标注类别数:5 标注类别名称:["flashover","insulator","damaged","fzc","nest"] 每个类别标注的框数: 绝缘子放电痕迹 flashover count = 1265 绝缘子 insulator count = 1948 绝缘子破损 damaged count = 1109 防震锤 fzc count = 91 鸟巢 nest count = 12 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-04-19

目标检测数据集VOC塔吊数据集VOC-2559张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):2559 标注数量(xml文件个数):2559 标注类别数:1 标注类别名称:["tadiao"] 每个类别标注的框数: tadiao count = 2936 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-04-09

数据集VOC城市道路街道占用经营数据集VOC-5266张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):5226 标注数量(xml文件个数):5226 标注类别数:1 标注类别名称:["zdjy"] 每个类别标注的框数: zdjy count = 5799 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-03-18

道路交通事故数据集VOC-1182张.zip

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1182 标注数量(xml文件个数):1182 标注类别数:1 标注类别名称:["accident"] 每个类别标注的框数: accident count = 1179 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注 视频详细介绍:www.bilibili.com/video/BV1Gb411Z7Y6/

2023-03-15

数据集VOC格式目标检测数据集河道垃圾水面漂浮物数据集-1304张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)

2023-03-05

数据集VOC格式目标检测数据集人员持刀数据集-6580张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):6580 标注数量(xml文件个数):6580 标注类别数:1 标注类别名称:["dao"] 每个类别标注的框数: dao count = 6958 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:持刀数据集主要来自视频截图,有杀鸡,切菜中的持刀占主要部分,持有小刀、菜刀、剪刀、砍刀等 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-20

数据集VOC格式目标检测数据集脚手架数据集-1322张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1322 标注数量(xml文件个数):1322 标注类别数:1 标注类别名称:["jsj"] 每个类别标注的框数: jsj count = 1341 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-19

数据集VOC格式城市道路垃圾检测数据集-892张可用yolo训练

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):892 标注数量(xml文件个数):892 标注类别数:1 标注类别名称:["trash"] 每个类别标注的框数: trash count = 1155 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:数据集主要是城市道路、草丛里面的垃圾,里面81张图片是瓶子,因为一般瓶子垃圾比较多 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-18

目标检测数据集VOC格式工程车辆数据集系列17渣土车数据集-3449张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):3449 标注数量(xml文件个数):3449 标注类别数:1 标注类别名称:["zhatuche"] 每个类别标注的框数: zhatuche count = 5437 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-16

分割数据集labelme格式猫狗catdog-4145张B版

数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):4145 标注数量(json文件个数):4145 标注类别数:2 标注类别名称:["dog","cat"] 每个类别标注的框数: dog count = 2814 cat count = 2319 使用标注工具:labelme 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集可以转成mask或者yolo格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-08

分割数据集labelme格式猫狗catdog-4146张A版

数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):4146 标注数量(json文件个数):4146 标注类别数:2 标注类别名称:["dog","cat"] 每个类别标注的框数: dog count = 2686 cat count = 2447 使用标注工具:labelme 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集可以转成mask或者yolo格式作语义分割或者实例分割,AB版不重合可合并训练 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-08

分割数据集labelme格式人person-5755张D版

数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):5755 标注数量(json文件个数):5755 标注类别数:1 标注类别名称:["person"] 每个类别标注的框数: person count = 23156 使用标注工具:labelme 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集可以转成mask或者yolo格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-08

分割数据集labelme格式人person-5800张C版

数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):5800 标注数量(json文件个数):5800 标注类别数:1 标注类别名称:["person"] 每个类别标注的框数: person count = 22935 使用标注工具:labelme 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集可以转成mask或者yolo格式作语义分割或者实例分割,ABCD版本不重合可合并训练 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-08

分割数据集labelme格式人person-5800张B版

数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):5800 标注数量(json文件个数):5800 标注类别数:1 标注类别名称:["person"] 每个类别标注的框数: person count = 24063 使用标注工具:labelme 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集可以转成mask或者yolo格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-08

分割数据集labelme格式人person-5850张A版

数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):5850 标注数量(json文件个数):5850 标注类别数:1 标注类别名称:["person"] 每个类别标注的框数: person count = 23443 使用标注工具:labelme 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集可以转成mask或者yolo格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-02-08

yolov8+deepsort+pyqt5源码

代码在安装环境后可以直接跑起来,只需要修改视频路径,源码支持pyqt5自己选择视频或者代码运行,代码运行为main.py,如果跑界面需要main_gui.py。视频演示结果地址 www.bilibili.com/video/BV1pP4y1y7LM

2023-01-30

行人属性识别Rethinking-of-PAR源码+数据集PA100K+pt模型.zip

这个是行人属性识别框架Rethinking_of_PAR,里面包含了PA100k数据集还有自己训练的PA100K的模型,模型格式为pt格式,此外还有demo.py直接对图片进行推理预测,官方没有提供预训练模型也没有提供对图片预测脚本,这个源码已经全部集成了模型、数据集、推理脚本。此外经过测试图片必须是jpg格式,如果是png格式推理会报错,这个是需要注意的一个地方。

2023-01-20

数据集VOC驾驶中人脸表情识别目标检测数据集1106张可用yolo训练

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1106 标注数量(xml文件个数):1106 标注类别数:6 标注类别名称:["anger","sad","surprised","disgust","happy","fear"] 每个类别标注的框数: anger count = 196 sad count = 180 surprised count = 202 disgust count = 120 happy count = 210 fear count = 207 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:这是驾驶中人脸表情检测数据集不是分类数据集! 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-01-12

数据集VOC目标检测数据集人脸表情识别检测8类别D版-8038张可用yolo训练

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):8038 标注数量(xml文件个数):8038 标注类别数:8 标注类别名称:["disgust","fear","happy","sad","anger","neutral","surprised","contempt"] 每个类别标注的框数: disgust count = 1005 fear count = 1005 happy count = 1005 sad count = 1004 anger count = 1005 neutral count = 1005 surprised count = 1005 contempt count = 1004 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:本次一共发布A,B,C,D四个版本,每个版本没有交叉重复的文件名,可以下载后混合在一起训练 特别声明:本数据集不对训练的模型或者权重文件

2023-01-11

数据集VOC目标检测数据集人脸表情识别检测8类别C版-8038张可用yolo训练

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):8038 标注数量(xml文件个数):8038 标注类别数:8 标注类别名称:["surprised","contempt","anger","happy","neutral","sad","fear","disgust"] 每个类别标注的框数: surprised count = 1005 contempt count = 1004 anger count = 1005 happy count = 1005 neutral count = 1005 sad count = 1004 fear count = 1005 disgust count = 1005 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:本次一共发布A,B,C,D四个版本,每个版本没有交叉重复的文件名,可以下载后混合在一起训练 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-01-11

数据集VOC目标检测数据集人脸表情识别检测8类别B版-8197张可用yolo训练

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):8197 标注数量(xml文件个数):8197 标注类别数:8 标注类别名称:["sad","disgust","anger","surprised","happy","fear","contempt","neutral"] 每个类别标注的框数: sad count = 1024 disgust count = 1025 anger count = 1025 surprised count = 1024 happy count = 1024 fear count = 1025 contempt count = 1025 neutral count = 1025 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:本次一共发布A,B,C,D四个版本,每个版本没有交叉重复的文件名,可以下载后混合在一起训练 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-01-11

数据集VOC目标检测数据集人脸表情识别检测8类别A版-8279张可用yolo训练

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):8279 标注数量(xml文件个数):8279 标注类别数:8 标注类别名称:["fear","sad","surprised","contempt","anger","neutral","disgust","happy"] 每个类别标注的框数: fear count = 1035 sad count = 1035 surprised count = 1035 contempt count = 1035 anger count = 1035 neutral count = 1034 disgust count = 1035 happy count = 1035 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:本次一共发布A,B,C,D四个版本,每个版本没有交叉重复的文件名,可以下载后混合在一起训练 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-01-11

数据集VOC格式输电线路异物数据集加标注目标检测数据集-295张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):295 标注数量(xml文件个数):295 标注类别数:1 标注类别名称:["yw"] 每个类别标注的框数: yw count = 304 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:网上提供的输电线异物悬挂异物基本都很水,我也下过很多发现根本不能用,于是我就是自己就截取视频和爬取图片打标,奈何网上图片资源太少,只有295张。 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-01-10

数据集VOC格式目标检测数据集西瓜数据集-1702张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1702 标注数量(xml文件个数):1702 标注类别数:1 标注类别名称:["watermelon"] 每个类别标注的框数: watermelon count = 2812 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-01-08

目标检测数据集VOC格式工程车辆数据集系列16叉车数据集-1000张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1000 标注数量(xml文件个数):1000 标注类别数:2 标注类别名称:["car","chache"] 每个类别标注的框数: car count = 323 chache count = 1049 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-01-04

目标检测数据集VOC格式工程车辆数据集系列15自卸车数据集-2065张

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):2065 标注数量(xml文件个数):2065 标注类别数:1 标注类别名称:["zixieche"] 每个类别标注的框数: zixieche count = 2380 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:数据集只有一个类别,其他工程车辆未被标注,只标注了自卸车,比如图片有推土车,这里不做标注。里面只对自卸车一种做了标注 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

2023-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除