自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2926)
  • 资源 (284)
  • 收藏
  • 关注

原创 [深度学习]基于YOLO高质量项目源码+模型+GUI界面汇总

以下项目全部是本人亲自编写代码,项目汇总如下:

2024-09-28 11:14:38 1586

原创 [数据集汇总]智慧交通-铁路相关数据集汇总

此外,铁轨异物入侵检测数据集能够及时发现并预警潜在的安全隐患,铁轨及卡扣分割数据集、铁轨石枕裂纹缺陷检测数据集等则通过语义分割技术,为铁路维护提供精准的数据支持。智慧交通在铁路领域的应用日益广泛,其数据集汇总涵盖了多个关键方面,为轨道交通、自动化、计算机等专业的研究提供了丰富的资源。这些数据集主要包括铁路手势分类、铁路旁边电气设备检测、铁轨异物入侵检测、铁路铁轨分割、铁轨及卡扣分割、铁轨石枕裂纹缺陷检测等,涵盖了图像分类、目标检测、语义分割等多种技术需求。

2024-09-15 12:12:40 2099

原创 电力行业电气领域相关数据集下载地址汇总输电线路变电站电网应用数据集汇总(全网最全)

例如,输电线路图像数据集通过无人机或直升机拍摄,包含了杆塔、绝缘子、导线等详细图像,为目标检测、分类和异常检测提供了丰富的素材。此外,还有针对变电站烟火检测、导线破损检测等特定任务的数据集,这些数据集通过收集实际场景中的图像和视频,帮助研究人员训练更加精准的算法。电力大数据不仅数据量庞大,类型也多种多样,包括结构化数据如交易电价、售电量等,以及非结构化数据如视频监控图像。通过深度学习和数据挖掘技术,研究人员能够从中发现潜在的模式和规律,为电力行业的决策和规划提供有力支持。

2024-08-23 21:42:27 3360

原创 C# OpenCvSharp DNN Onnx项目源码汇总

本项目涉及C#编程相关,包含深度学习、图像处理、opencvsharp操作等相关编程项目,现在将项目汇总如下:

2024-08-18 08:39:43 783

原创 2024年图像分类数据集大合集所有下载地址汇总

2024年目标检测数据集大合集所有下载地址汇总

2024-04-30 07:33:02 1946 2

原创 2024年目标检测数据集大合集所有下载地址汇总

数据集名称下载地址瓷砖瑕疵检测数据集VOC+YOLO标注.zip点我下载道路路标交通标志检测数据集VOC+YOLO格式877张4类别.zip点我下载钢材缺陷检测数据集VOC+YOLO格式386张5类别.7z点我下载中国交通标志检测数据集VOC+YOLO格式5998张58类别.7z点我下载道路交通事故检测数据集VOC+YOLO格式11819张2类别.7z点我下载钢丝绳破损灼伤缺陷检测数据集VOC+YOLO格式1318张2类别.7z点我下载公共场所危险物品检测数据集VOC+YOLO格式1431

2024-04-30 07:30:19 5421 1

原创 [yolov11改进系列]基于yolov11的骨干轻量化更换backbone为shufflenetv2网络python源码+训练源码

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

2025-05-25 14:19:45 616

原创 [yolov11改进系列]基于yolov11引入双层路由注意力机制Biformer解决小目标遮挡等问题python源码+训练源码

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

2025-05-25 11:04:23 401

原创 [yolov11改进系列]使用轻量级骨干网络MobileNetV1替换backbone的python源码+训练源码

传统卷积神经网络, 内存需求大、 运算量大导致无法在移动设备以及嵌入式设备上运行.VGG16的权重大小有450M,而ResNet中152层的模型,其权重模型644M,这么大的内存需求是明显无法在嵌入式设备上进行运行的。而网络应该服务于生活,所以轻量级网络的很重要的。MobileNet网络是由google团队在2017年提出的,专注于移动端或者嵌入式设备中的轻量级CNN网络。相比传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量。

2025-05-25 09:02:01 293

原创 [yolov11改进系列]使用轻量级骨干网络MobileNetV2替换backbone的python源码+训练源码

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

2025-05-25 06:48:43 315

原创 [yolov11改进系列]使用轻量级骨干网络MobileNetV3替换backbone的python源码+训练源码

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

2025-05-24 21:55:35 621

原创 [yolov11改进系列]使用轻量级骨干网络MobileNetV4替换backbone的python源码+训练源码+改进流程+改进原理

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

2025-05-24 17:27:52 496

原创 [yolov11改进系列]基于yolov11引入混合局部通道注意力机制MLCA的python源码+训练源码+改进原理+改进流程

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

2025-05-24 14:20:41 588

原创 [yolov11改进系列]基于yolov11添加SE注意力机制python源码+训练源码+改进原理+改进流程

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

2025-05-24 09:47:44 590

原创 [python]opencv从源码编译python版本发现不生成cv2.pyd

很可能是cmake时候没有正确配置,通过搜python关键词发现没有B。仔细对照下图的参考配置,若出现不存在的选项,(我当时没有。此时可以进行手动添加。,点击OK,即可出现该选项。此选项为python编译的。,在Name 中输入。

2025-05-24 08:32:07 143

原创 [数据集]无人机视角检测分割数据集合集

完整列表访问:github.com/futureflsl/drone-dataset。

2025-05-23 17:46:04 441

原创 基于PaddleOCR+pyqt5实现一个简单的手写汉字识别系统

本项目是一个基于PyQt5和PaddleOCR的手写汉字识别系统。用户可以在界面上用鼠标手写汉字,点击"开始识别"按钮后,系统会自动识别手写内容并在下方显示识别结果。

2025-05-23 11:27:42 281

原创 军事目标系列之迷彩作战人员检测数据集VOC+YOLO格式2755张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Camouflage"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):2755。标注数量(xml文件个数):2755。标注数量(txt文件个数):2755。

2025-05-22 20:33:17 142

原创 [python][dlib]dlib报错Failing expression was false.

更换numpy到1.x版本,比如1.24.4。运行到这个代码会报错。

2025-05-22 19:05:51 76

原创 光伏热红外缺陷检测数据集VOC+YOLO格式11529张2类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["area_hotspot","dot_hotspot"]=>[局部热斑,单点热斑]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(txt文件个数):11529。标注规则:对类别进行画矩形框。

2025-05-22 14:44:21 125

原创 落石滑坡倒树自然灾害检测数据集VOC+YOLO格式958张3类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["fall_rock","fall_tree","landslides"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(xml文件个数):958。标注数量(txt文件个数):958。

2025-05-22 14:03:24 214

原创 无人机海洋或河道水上监测检测数据集VOC+YOLO格式2903张6类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["boat","buoy","human","kayak","sailboat","surfer"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(txt文件个数):2903。

2025-05-22 13:42:07 131

原创 无人机热红外视角人车检测数据集VOC+YOLO格式2866张5类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["bicycle","car","dontcare","other_vehicle","person"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(txt文件个数):2866。

2025-05-22 13:27:14 192

原创 西红柿番茄成熟度腐烂检测数据集VOC+YOLO格式2283张5类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["tomato_half_ripe","tomato_overripe","tomato_ripe","tomato_rotten","tomato_unripe"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注数量(xml文件个数):2283。标注数量(txt文件个数):2283。

2025-05-22 09:20:49 207

原创 辣椒成熟腐烂检测数据集VOC+YOLO格式2644张3类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["ripe","rotten","unripe"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注数量(xml文件个数):2644。标注数量(txt文件个数):2644。标注规则:对类别进行画矩形框。

2025-05-22 08:51:29 214

原创 遥感建筑物屋顶识别分割数据集labelme格式14327张1类别

重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割。数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注规则:对类别进行画多边形框polygon。标注数量(json文件个数):14327。使用标注工具:labelme=5.5.0。图片数量(jpg文件个数):14327。数据集中有部分增强图片。

2025-05-22 08:30:34 222

原创 西红柿番茄成熟腐烂识别分割数据集labelme格式1531张3类别

重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割。数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注类别名称:["rotten","ripe","unripe"]标注规则:对类别进行画多边形框polygon。标注数量(json文件个数):1531。图片数量(jpg文件个数):1531。

2025-05-22 08:20:50 219

原创 OpenVINO在Windows x64 系统上的下载与安装教程

openvino-2025.1

2025-05-21 07:31:05 311

原创 无人机拍摄红外图像光伏板缺陷检测数据集VOC+YOLO格式2723张9类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["diode","droppings","hot module","hot string","hotmodule","hotspot","hotstring","reversed polarity","shading"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)shading 框数 = 3。

2025-05-20 18:27:14 194

原创 建筑墙壁红外热成像裂缝潮湿检测数据集VOC+YOLO格式306张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Crack","Moisture"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):306。标注数量(xml文件个数):306。标注数量(txt文件个数):306。

2025-05-20 18:12:54 154

原创 轴承表面缺陷检测数据集VOC+YOLO格式3945张3类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注类别名称:["aocao","cashang","huahen"]图片数量(jpg文件个数):3945。标注数量(xml文件个数):3945。标注数量(txt文件个数):3945。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2025-05-20 16:38:28 300

原创 [python]ERROR: Could not install packages due to an OSError: [Errno 13] Permission denied:

当pip install 模块时候会报错:ERROR: Could not install packages due to an OSError: [Errno 13] Permission denied: 'E:\\Programs\\Py尝试以管理员运行终端结果还是一样报错。因此不是管理员问题,这时候考虑到杀毒软件问题。1、关闭防火防2、关闭360安全管家,杀毒软件等3、重新执行pip命令即可

2025-05-20 15:27:05 137

原创 无法将磁盘“C:\Users\xxxx\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu20.04LTS_79rhkp1fndgsc\Loc

无法将磁盘“C:\Users\xxxx\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu20.04LTS_79rhkp1fndgsc\Loc。重新打开ubunutu20.04会重新初始化,设置自己用户名和密码即可。残留导致,此时我们无需卸载只需要。

2025-05-20 09:46:00 175

原创 6类水果好坏检测数据集VOC+YOLO格式5412张12类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Orange_Bad","Orange_Good","Pomegranate_Bad","Pomegranate_Good","apple_bad","apple_good","banana_bad","banana_good","guava_bad","guava_good","lime_bad","lime_good"]标注数量(xml文件个数):5412。标注数量(txt文件个数):5412。

2025-05-20 08:13:31 198

原创 6类水果好坏分割数据集labelme格式5558张14类别

标注类别名称:["apple_good","Pomegranate_Bad","guava_good","guaba_good","guava_bad","Orange_Good","lime_bad","lime_good","banana_good","banana_bad","Orange_Bad","apple_bad","fruits","Pomegranate_Good"]数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)

2025-05-20 07:47:01 144

原创 火车车轮缺陷检测数据集VOC+YOLO格式829张4类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Cracks-Scratches","Discoloration","Shelling","Wheel"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):829。标注数量(xml文件个数):829。标注数量(txt文件个数):829。标注规则:对类别进行画矩形框。

2025-05-20 06:47:05 119

原创 军事目标检测数据集VOC+YOLO格式9765张10类别

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Airplane","Armored_car","BMP","Car","Person","Plane","RSZO","Sau","Tank","Truck"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注数量(txt文件个数):9765。Car 框数 = 4640。

2025-05-19 17:03:50 309

原创 救生圈检测数据集VOC+YOLO格式909张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["life_ring"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):909。标注数量(xml文件个数):909。标注数量(txt文件个数):909。标注规则:对类别进行画矩形框。

2025-05-19 15:26:38 136

原创 救生衣穿戴检测数据集VOC+YOLO格式2171张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["notwear","wear"]特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):2171。标注数量(xml文件个数):2171。标注数量(txt文件个数):2171。

2025-05-19 14:34:29 131

原创 基于yolov11的输电线路巡检异物检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面

输电线路周边可能出现的塑料薄膜、风筝线、广告布等异物,极易因风力、振动等因素缠绕导线,引发短路、闪络甚至火灾事故,对电网安全构成重大威胁。标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["balloon","kite","nest","trash"]数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)在目标检测任务中,评估模型的性能是至关重要的。

2025-05-19 08:32:18 834

ruby193-rubygem-ZenTest-4.8.1-1.el6.centos.alt.noarch.rpm

ruby193-rubygem-ZenTest-4.8.1-1.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-v8-devel-3.14.5.10-2.el6.centos.alt.x86_64.rpm

ruby193-v8-devel-3.14.5.10-2.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-runtime-1.1-9.el6.centos.alt.x86_64.rpm

ruby193-runtime-1.1-9.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-rubygem-sprockets-doc-2.4.5-4.el6.centos.alt.noarch.rpm

ruby193-rubygem-sprockets-doc-2.4.5-4.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sinatra-doc-1.3.2-12.el6.centos.alt.noarch.rpm

ruby193-rubygem-sinatra-doc-1.3.2-12.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sqlite3-1.3.6-3.el6.centos.alt.x86_64.rpm

ruby193-rubygem-sqlite3-1.3.6-3.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-rubygem-test_declarative-0.0.5-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-test_declarative-0.0.5-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sinatra-1.3.2-12.el6.centos.alt.noarch.rpm

ruby193-rubygem-sinatra-1.3.2-12.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sprockets-2.4.5-4.el6.centos.alt.noarch.rpm

ruby193-rubygem-sprockets-2.4.5-4.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygems-devel-1.8.23-50.el6.centos.alt.noarch.rpm

ruby193-rubygems-devel-1.8.23-50.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygems-devel-1.8.23-49.el6.centos.alt.noarch.rpm

ruby193-rubygems-devel-1.8.23-49.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygems-1.8.23-49.el6.centos.alt.noarch.rpm

ruby193-rubygems-1.8.23-49.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sass-3.1.20-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-sass-3.1.20-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sass-rails-3.2.5-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-sass-rails-3.2.5-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sass-doc-3.1.20-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-sass-doc-3.1.20-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sass-rails-doc-3.2.5-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-sass-rails-doc-3.2.5-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-rspec-expectations-doc-2.11.1-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-rspec-expectations-doc-2.11.1-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-rspec-mocks-doc-2.11.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-rspec-mocks-doc-2.11.1-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-rspec-core-2.11.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-rspec-core-2.11.1-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-rspec-mocks-2.11.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-rspec-mocks-2.11.1-2.el6.centos.alt.noarch.rpm

2025-02-11

tensorrt安装后测试python代码+onnx模型

tensorrt安装后测试python代码+onnx模型

2025-02-16

v8314-1.1-9.el6.centos.alt.x86_64.rpm

v8314-1.1-9.el6.centos.alt.x86_64.rpm

2025-02-11

v8-devel-3.14.5.10-6.el6.centos.alt.x86_64.rpm

v8-devel-3.14.5.10-6.el6.centos.alt.x86_64.rpm

2025-02-11

scl-utils-20120927-11.el6.centos.alt.x86_64.rpm

scl-utils-20120927-11.el6.centos.alt.x86_64.rpm

2025-02-11

scl-utils-build-20120927-11.el6.centos.alt.x86_64.rpm

scl-utils-build-20120927-11.el6.centos.alt.x86_64.rpm

2025-02-11

v8-3.14.5.10-6.el6.centos.alt.x86_64.rpm

v8-3.14.5.10-6.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-v8-3.14.5.10-2.el6.centos.alt.x86_64.rpm

ruby193-v8-3.14.5.10-2.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-scldevel-1.1-9.el6.centos.alt.x86_64.rpm

ruby193-scldevel-1.1-9.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-rubygem-ZenTest-doc-4.8.1-1.el6.centos.alt.noarch.rpm

ruby193-rubygem-ZenTest-doc-4.8.1-1.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-tilt-doc-1.3.3-10.el6.centos.alt.noarch.rpm

ruby193-rubygem-tilt-doc-1.3.3-10.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-treetop-1.4.10-6.el6.centos.alt.noarch.rpm

ruby193-rubygem-treetop-1.4.10-6.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-tzinfo-doc-0.3.33-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-tzinfo-doc-0.3.33-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-uglifier-doc-1.2.6-4.el6.centos.alt.noarch.rpm

ruby193-rubygem-uglifier-doc-1.2.6-4.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-thor-doc-0.18.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-thor-doc-0.18.1-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-test_declarative-doc-0.0.5-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-test_declarative-doc-0.0.5-3.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-thor-0.18.1-2.el6.centos.alt.noarch.rpm

ruby193-rubygem-thor-0.18.1-2.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-therubyracer-doc-0.11.0-0.9.beta5.el6.centos.alt.noarch.rpm

ruby193-rubygem-therubyracer-doc-0.11.0-0.9.beta5.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-therubyracer-0.11.0-0.9.beta5.el6.centos.alt.x86_64.rpm

ruby193-rubygem-therubyracer-0.11.0-0.9.beta5.el6.centos.alt.x86_64.rpm

2025-02-11

ruby193-rubygem-tilt-1.3.3-10.el6.centos.alt.noarch.rpm

ruby193-rubygem-tilt-1.3.3-10.el6.centos.alt.noarch.rpm

2025-02-11

ruby193-rubygem-sqlite3-doc-1.3.6-3.el6.centos.alt.noarch.rpm

ruby193-rubygem-sqlite3-doc-1.3.6-3.el6.centos.alt.noarch.rpm

2025-02-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除