自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1863)
  • 收藏
  • 关注

原创 2024年图像分类数据集大合集所有下载地址汇总

2024年目标检测数据集大合集所有下载地址汇总

2024-04-30 07:33:02 668 2

原创 2024年目标检测数据集大合集所有下载地址汇总

数据集名称下载地址瓷砖瑕疵检测数据集VOC+YOLO标注.zip点我下载道路路标交通标志检测数据集VOC+YOLO格式877张4类别.zip点我下载钢材缺陷检测数据集VOC+YOLO格式386张5类别.7z点我下载中国交通标志检测数据集VOC+YOLO格式5998张58类别.7z点我下载道路交通事故检测数据集VOC+YOLO格式11819张2类别.7z点我下载钢丝绳破损灼伤缺陷检测数据集VOC+YOLO格式1318张2类别.7z点我下载公共场所危险物品检测数据集VOC+YOLO格式1431

2024-04-30 07:30:19 1555 1

原创 [C#]winform基于opencvsharp实现黑白图像上色

我们首先根据CIE Lab颜色空间定义颜色问题。与RGB颜色空间一样,它是3通道颜色空间,但与RGB颜色空间不同,颜色信息仅在a(绿红分量)和b(蓝黄分量)通道中编码。L(亮度)通道仅对亮度信息进行编码。我们想要着色的灰度图像可以被认为是Lab颜色空间中图像的L通道,我们的目标是找到a和b分量。可以使用标准颜色空间变换将该Lab图像变换为RGB颜色图像。例如,在OpenCV中,这可以使用COLOR_BGR2Lab选项的cvtColor来实现。

2024-06-18 14:29:09 252

原创 OpenCV C++的Mat与 OpenCvSharp Mat相互传递

在项目中,我们结合OpenCvSharp源码,使用OpenCvSharp数据指针实现了在C#与C++之间传递图像数据。与传统的数据传递方式相比,该方式通过传递指针,通过指针的方式实现对同一块图像数据进行操作,避免了图像数据的来回转换,极大的节省了程序运行时间以及内存消耗。

2024-06-18 13:57:44 275

原创 [C#]使用深度学习算法opencvsharp部署RecRecNet广角图像畸变矫正校正摄像广角镜头畸变图像

给定一个校正的广角图像,RecRecNet旨在从校正技术的角度在图像内容和边界上构建双赢表示。设计了一种基于DoF的课程学习,以掌握渐进变形规则并减轻复杂结构近似的负担。提出了一个薄板样条(TPS)运动模块,以灵活地形成非线性非刚性校正变换。深入分析了为什么变形的图像边界会显著影响视觉感知模型。首次实现大视野(FoV)视觉的双赢表示。

2024-06-18 09:15:42 76

原创 [absl_py][python]absl_py所有whl文件下载地址汇总

标准库扩展:absl_py扩展了Python标准库,提供了一些额外的功能,如线程池、时间戳处理、异常处理等,帮助开发者编写高性能和可维护的Python代码。日志记录:absl_py提供了一个灵活的日志记录框架,可以记录应用程序的日志信息,并支持不同级别的日志记录,日志消息可以输出到控制台、文件或其他地方。总之,absl_py是一个功能丰富、性能卓越的Python软件包,为开发者提供了高质量的实用工具,是现代Python开发者的得力助手。absl_py拥有活跃的社区,不断更新和完善,问题反馈及时。

2024-06-18 05:25:20 479

原创 Pycharm怎么默认终端连接远程服务器

想要默认终端连接远程服务器,需要点File->Setting->Tools->SSH Terminal。或者直接搜Terminal,找到这个界面。每次都得点一下Start SSH。把这里改成你的远程服务器即可。

2024-06-17 17:40:08 191

原创 [C++]使用yolov10的onnx模型结合onnxruntime和bytetrack实现目标追踪

基于yolov8官方目标追踪botsort和bytetrack源码开发视频演示,基于C++版本yolov5-onnx和bytetrack追踪算法实现目标追踪,使用C++部署yolov8的onnx和bytetrack实现目标追踪,将yolov8封装成一个类几行代码完成语义分割任务,使用C#的winform部署yolov8的onnx实例分割模型。ByTetrack的优势在于其强大的鲁棒性和适应性,即使在目标被遮挡或出现运动模糊的情况下,它仍能保持较高的追踪精度。

2024-06-16 17:21:38 599

原创 chromedriver114以后版本下载地址汇总chromedriver所有版本下载地址汇总国内源下载

但是自从115版本及其以后网站就找不到了,因此整理了截止2024年6月16日前所有在windows x64系统上所有115版本及其以后以后版本,如果需要macOS或者linux上对应chrome版本可以私信我。chromedriver 114以前版本下载地址https://registry.npmmirror.com/binary.html?path=chromedriver/谷歌浏览器版本经常会升级,chromedriver 也得下载匹配的版本。

2024-06-16 06:49:19 707

原创 [大模型]XVERSE-MoE-A4.2B Transformers 部署调用

是由深圳元象科技自主研发的支持多语言的大语言模型(Large Language Model),使用混合专家模型(MoE,Mixture-of-experts)架构,模型的总参数规模为 258 亿,实际激活的参数量为 42 亿,本次开源的模型为底座模型模型结构。

2024-06-16 05:56:03 880

原创 [大模型]XVERSE-7B-Chat Lora 微调

本节我们简要介绍如何基于 transformers、peft 等框架,对 XVERSE-7B-Chat 模型进行 Lora 微调。知乎|深入浅出Lora。这个教程会在同目录下给大家提供一个notebook文件,来让大家更好的学习。LoraConfig这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。task_type:模型类型:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。r。

2024-06-16 05:55:10 567

原创 [大模型]XVERSE-7B-chat WebDemo 部署

XVERSE-7B-Chat为模型对齐后的版本。

2024-06-16 05:53:34 525

原创 [大模型]XVERSE-7B-chat langchain 接入

XVERSE-7B-Chat为模型对齐后的版本。

2024-06-16 05:52:32 595

原创 [大模型]XVERSE-7B-chat FastAPI 部署

XVERSE-7B-Chat为模型对齐后的版本。

2024-06-16 05:51:36 635

原创 [大模型]XVERSE-7B-chat Transformers 推理

XVERSE-7B-Chat为模型对齐后的版本。

2024-06-16 05:50:24 754

原创 [java]windows和linux下jdk1.8安装包所有版本系列下载地址汇总

【windows jdk1.9系列下载地址】【windows jdk1.8系列下载地址】【windows jdk1.7系列下载地址】【windows jdk1.6系列下载地址】【linux jdk1.8系列下载地址】

2024-06-15 21:04:15 356 2

原创 windows10或者windows11怎么查看自己电脑显卡型号

如果有nvidia字样表示自己电脑有nvidia显卡,如果是AMD或者intel字样表示没有nvidia显卡。注意如果你有GPU0或者GPU1说明你电脑是双显卡,一般都是一个是intel核心显卡,一个是AMD或者nviida显卡,需要咨询查看。windows11系统查看跟win10差不多,区别在于任务栏右键单击没有资源管理器,需要按住Shift+Ctrl+Esc即可弹出任务管理器,然后在找到性能查看即可。打开任务管理器后,点击性能查看左侧GPU0或者GPU1。右键单击任务栏后弹出菜单选择任务管理器。

2024-06-15 18:26:14 272

原创 windows系统下如何确认CUDA和CUDNN都安装成功了

目录前言确认CUDA安装成功确认CUDNN安装是否成功 进入如下CUDA目录 启动cmd命令行节目并将deviceQuery拖入命令行窗口, 然后按回车运行 出现这个,则说明第一项测试通过 然后同理将bandwidthTest拖入命令行并回车 然后依次执行下列的命令 出现如图所示的结果,则CUDNN安装正确。

2024-06-15 18:20:16 339

原创 [xmake]构建静态库和动态库

在这两个例子中,我们创建了一个名为"mylib"的库,源代码位于"src"目录下,并且假设所有源文件都是C语言编写的。在xmake中创建静态库和动态库的方法非常相似。在实际使用中,可以根据需要选择是否开启调试模式,以及其他构建配置。创建xmake工程文件(xmake.lua)。,我们可以指定是创建静态库还是动态库。配置工程属性,包括工程名、版本等。设置是创建静态库还是动态库。xmake 静态库和动态库。添加源代码文件到工程中。构建工程生成库文件。用于切换到调试模式,

2024-06-15 16:18:34 247

原创 [C++]使用C++部署yolov10目标检测的tensorrt模型支持图片视频推理windows测试通过

获取pt模型:https://github.com/THU-MIG/yolov10训练自己的模型或者直接使用yolov10官方预训练模型。将编译好的deploy.dll和deploy.lib文件放到yolov10-tensorrt-cplus/lib文件夹。下载源码:https://github.com/laugh12321/yolov10/tree/nms并安装到环境中。注意导出模型和官方yolov10的onnx是不一样的,使用yolov10-nms导出模型结构如图。

2024-06-15 08:54:51 428

原创 快速编译安装tensorrt_yolo

通过 PyPI 安装模块,您只需执行以下命令即可:如果您希望获取最新的开发版本或者为项目做出贡献,可以按照以下步骤从 GitHub 克隆代码库并安装:git clone https://github.com/laugh12321/TensorRT-YOLO # 克隆代码库在以上步骤中,您可以先克隆代码库并进行本地构建,然后再使用pip安装生成的 Wheel 包,确保安装的是最新版本并具有最新的功能和改进。Deploy。

2024-06-15 06:51:38 379

原创 [大模型]Qwen2-7B-Instruct Lora 微调

LoraConfig这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。task_type:模型类型:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。rlora的秩,具体可以看Lora原理lora_alphaLora alaph,具体作用参见Lora原理Lora的缩放是啥嘞?当然不是r(秩),这个缩放就是, 在这个LoraConfig中缩放就是4倍。

2024-06-15 06:39:59 730

原创 [大模型]Qwen2-7B-Instruct vLLM 部署调用

vLLM框架是一个高效的大语言模型vLLMKVvLLMvLLMOpenAIAPIGPUvLLM在AutoDL平台中租赁一个 3090 等 24G 显存大小的容器实例,镜像选择如下PyTorch→2.1.0→→12.1接下来打开本地设备终端使用ssh的方式访问,在终端中依次复制登录指令和密码完成登录ssh登录成功后的界面如图所示👇或者也可以直接打开AutoDL网页端的快捷工具中选择JupyterLab并在其中点击终端打开(这种方式不需要验证🫠)接下来开始环境配置、模型下载和运行演示 ~pip。

2024-06-15 06:38:25 676

原创 [大模型]Qwen2-7B-Instruct WebDemo部署

在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。保存好后在终端运行 python /root/autodl-tmp/download.py 执行下载,下载模型需要一些时间。接下来,我们打开刚刚租用服务器的 JupyterLab,如下图所示,然后打开其中的终端,开始环境配置、模型下载和运行演示。文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。

2024-06-15 06:35:16 441

原创 [大模型]Qwen2-7B-Instruct 接入 LangChain 搭建知识库助手

在上述类定义中,我们分别重写了构造函数和 _call 函数:对于构造函数,我们在对象实例化的一开始加载本地部署的 Qwen2 模型,从而避免每一次调用都需要重新加载模型带来的时间过长;_call 函数是 LLM 类的核心函数,LangChain 会调用该函数来调用 LLM,在该函数中,我们调用已实例化模型的 generate 方法,从而实现对模型的调用并返回调用结果。完成自定义 LLM 类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

2024-06-15 06:31:57 427

原创 [大模型]Qwen2-7B-Instruct FastApi 部署调用

在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。接下来,我们打开刚刚租用服务器的 JupyterLab,如下图所示,然后打开其中的终端,开始环境配置、模型下载和运行演示。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出 issue。

2024-06-15 06:30:56 308

原创 [xmake]xmake常用命令

xmake f -c:用于清除 xmake 的配置缓存。xmake 在执行 xmake f 命令时会生成一个配置缓存文件,该文件保存了项目的配置信息。通过执行 xmake f -c 命令,可以清除这些缓存文件,以便重新配置项目。xmake project -k vsxmake -m "debug,release" :会生成 sln 工程,点开后和平时使用 vs 写代码一样。xmake f --toolchain=clang:工具链切换为clang,您也可以指定为gcc或者msvc。

2024-06-14 21:48:52 236

原创 [xmake]xmake安装和简单测试

接着我们在cmd输入xmake即可编译成exe文件,最后在执行xmake run即可查看结果。下载官方编译好的安装包,这边我下载是绿色安装包,您也可以选择安装器进行自动安装。解压到任意文件夹,建议目录不包含中文和空格,然后将路径加入环境变量。至此xmake安装完成,接下来我们检测测试一下,首先打开cmd输入。会自动生成一个hello文件夹。找到main.cpp代码查看。

2024-06-14 21:40:08 221

原创 [C#]使用C#部署yolov10的目标检测tensorrt模型

注意源码提供上面对应环境的dll,只需要安装上面一样cuda+cudnn和tensorrt版本即可正常运行。如果您不安装一样版本不能正常运行。此时需要重新编译TensorRtExtern.dll,此外由于tensorrt依赖硬件不一样电脑可能无法共用tensorrt模型,所以必须要重新转换onnx模型到engine才可以运行。tensorrt依赖不同硬件需要自己从onnx转换tensorrt,转换就是调用api实现,流程如下。最后将转换好的tenorrt模型使用C#源码即可。【演示源码下载地址】

2024-06-14 15:28:36 418

原创 [python]安装fenics后使用报错OPENSSL_3.2.0 not found (required by

安装fenics后使用报错OPENSSL_3.2.0 not found (required by类似错误,原因就是环境里面libssl.so和fenics依赖要求版本不一致导致,解决方法就是:

2024-06-14 12:44:17 83

原创 [数据集][目标检测]减速带检测数据集VOC+YOLO格式5400张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)重要说明:图片有对同一个减速带拍摄情况,且拍摄时间都集中在下午5点以后或者晚上时间。特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):5400。标注数量(xml文件个数):5400。标注数量(txt文件个数):5400。使用标注工具:labelImg。标注规则:对类别进行画矩形框。

2024-06-14 07:20:02 397

原创 [数据集][实例分割]减速带分割数据集json+yolo格式5400张1类别

数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件以及对应yolo格式txt)重要说明:可以将数据集用labelme打开编辑,json数据集可以转成mask或者yolo格式作语义分割或者实例分割。特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。标注规则:对类别进行画多边形框polygon。标注数量(json文件个数):5400。图片数量(jpg文件个数):5400。标注数量(txt文件个数):5400。

2024-06-14 07:10:29 194

原创 [数据集][目标检测]减速区域检测数据集VOC+YOLO格式1654张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注。图片数量(jpg文件个数):1654。标注数量(xml文件个数):1654。标注数量(txt文件个数):1654。标注类别名称:["bump"]使用标注工具:labelImg。bump 框数 = 1681。标注规则:对类别进行画矩形框。

2024-06-14 06:36:38 190

原创 [大模型]Phi-3-mini-4k-Instruct Lora 微调

在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。的指示将端口映射到本地,然后在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。换为你的容器实例对应端口号。

2024-06-14 05:54:06 860

原创 [大模型]Phi-3-mini-4k-instruct WebDemo 部署

在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。的指示将端口映射到本地,然后在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。换为你的容器实例对应端口号。

2024-06-14 05:52:34 358

原创 [大模型]Phi-3-mini-4k-instruct langchain 接入

为便捷构建 LLM 应用,我们需要基于本地部署的 Phi-3-mini-4k-instruct,自定义一个 LLM 类,将 Phi-3-mini-4k-instruct 接入到 LangChain 框架中。基于本地部署的 Phi-3-mini-4k-instruct 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可。通过langchain调用phi3-mini-4k-instruct 模型讲个故事。

2024-06-14 05:51:39 276

原创 [大模型]Phi-3-mini-4k-instruct FastApi 部署调用

在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。执行下载,模型大小为 8 GB,下载模型大概需要 10~15 分钟。如果版本不对,可以通过下面命令升级。

2024-06-14 05:50:25 336

原创 pycharm上传文件到服务器python代码部署到服务器

上图中,Root path 这个地址是上传代码的根目录,后续会用到!

2024-06-13 21:37:21 227

原创 Pycharm连接服务器后终端Terminal还在本地

Start SSH Session即可。

2024-06-13 21:32:59 151

原创 [环境配置]vscode通过ssh连接autodl进行项目开发

回车后会弹出以下自定义SSH config 文件的弹窗,不需要选择直接回车即可。马上可能会弹出选择远程服务器是。

2024-06-13 20:54:49 370

AoikTopDownParser-0.4.1-py2.py3-none-any.whl.zip

AoikTopDownParser-0.4.1-py2.py3-none-any.whl.zip

2024-06-17

AoikTopDownParser-0.4.0-py2.py3-none-any.whl.zip

AoikTopDownParser-0.4.0-py2.py3-none-any.whl.zip

2024-06-17

AoikTopDownParser-0.3.0-py2.py3-none-any.whl.zip

AoikTopDownParser-0.3.0-py2.py3-none-any.whl.zip

2024-06-17

AoikSixyIO-0.1.0-py2.py3-none-any.whl.zip

AoikSixyIO-0.1.0-py2.py3-none-any.whl.zip

2024-06-17

AoikTopDownParser-0.2.0-py2.py3-none-any.whl.zip

AoikTopDownParser-0.2.0-py2.py3-none-any.whl.zip

2024-06-17

AoikRegistryEditor-0.1.0-py3-none-any.whl.zip

AoikRegistryEditor-0.1.0-py3-none-any.whl.zip

2024-06-17

AoikPyMoPa-0.1.0-py2.py3-none-any.whl.zip

AoikPyMoPa-0.1.0-py2.py3-none-any.whl.zip

2024-06-17

AoikImportUtil-0.3.0-py2.py3-none-any.whl.zip

AoikImportUtil-0.3.0-py2.py3-none-any.whl.zip

2024-06-17

AoikInspectArgs-0.2.0-py2.py3-none-any.whl.zip

AoikInspectArgs-0.2.0-py2.py3-none-any.whl.zip

2024-06-17

AoikLiveReload-0.1.0-py2.py3-none-any.whl.zip

AoikLiveReload-0.1.0-py2.py3-none-any.whl.zip

2024-06-17

AoikPDFBookmark-0.1.0-py2-none-any.whl.zip

AoikPDFBookmark-0.1.0-py2-none-any.whl.zip

2024-06-17

AoikImportUtil-0.2.3-py2.py3-none-any.whl.zip

AoikImportUtil-0.2.3-py2.py3-none-any.whl.zip

2024-06-17

AoikHotkey-0.7.0-py2.py3-none-any.whl.zip

AoikHotkey-0.7.0-py2.py3-none-any.whl.zip

2024-06-17

AoikHotkey-0.6.0-py2.py3-none-any.whl.zip

AoikHotkey-0.6.0-py2.py3-none-any.whl.zip

2024-06-17

AoikI18n-0.1.0-py2.py3-none-any.whl.zip

AoikI18n-0.1.0-py2.py3-none-any.whl.zip

2024-06-17

AoikImportUtil-0.1.0-py2.py3-none-any.whl.zip

AoikImportUtil-0.1.0-py2.py3-none-any.whl.zip

2024-06-17

AoikHotkey-0.5.0-py2.py3-none-any.whl.zip

AoikHotkey-0.5.0-py2.py3-none-any.whl.zip

2024-06-17

AoikConsulWatcher-0.0.1-py2.py3-none-any.whl.zip

AoikConsulWatcher-0.0.1-py2.py3-none-any.whl.zip

2024-06-17

AoikBookmarksToFiles-0.1.4-py2.py3-none-any.whl.zip

AoikBookmarksToFiles-0.1.4-py2.py3-none-any.whl.zip

2024-06-17

AoikBookmarksToFiles-0.1.5-py2.py3-none-any.whl.zip

AoikBookmarksToFiles-0.1.5-py2.py3-none-any.whl.zip

2024-06-17

基于C++ opencv实现的图像上色源码+项目说明.7z

测试环境: win10 x64 vs2019 opencv==4.8.0 用记事本打开FIRC.vcxproj修改里面2个opencv路径然后打开即可运行查看效果

2024-06-18

基于python opencv实现的图像上色源码+项目说明.7z

本人亲自编写只需要opencv模块即可进行图像上色的源码,如运行有问题随时联系 安装好opencv: pip install opencv-python 运行命令: streamlit run main.py

2024-06-18

C# winform使用opencvsharp部署RecRecNet广角图像畸变矫正校正演示源码.7z

【测试环境】 vs2019 netframeowrk==4.7.2 opencvsharp==4.8.0 【视频演示】 https://www.bilibili.com/video/BV1zJ4m1u7VZ/ 【博文地址】 https://blog.csdn.net/FL1623863129/article/details/139760635

2024-06-18

absl_py-2.0.0-py3-none-any.whl.zip

absl_py-2.0.0-py3-none-any.whl.zip

2024-06-17

absl_py-2.1.0-py3-none-any.whl.zip

absl_py-2.1.0-py3-none-any.whl.zip

2024-06-17

absl_py-1.3.0-py3-none-any.whl.zip

absl_py-1.3.0-py3-none-any.whl.zip

2024-06-17

absl_py-1.4.0-py3-none-any.whl.zip

absl_py-1.4.0-py3-none-any.whl.zip

2024-06-17

absl_py-1.1.0-py3-none-any.whl.zip

absl_py-1.1.0-py3-none-any.whl.zip

2024-06-17

absl_py-1.2.0-py3-none-any.whl.zip

absl_py-1.2.0-py3-none-any.whl.zip

2024-06-17

absl_py-1.0.0-py3-none-any.whl.zip

absl_py-1.0.0-py3-none-any.whl.zip

2024-06-17

absl_py-0.15.0-py3-none-any.whl.zip

absl_py-0.15.0-py3-none-any.whl.zip

2024-06-17

absl_py-0.14.0-py3-none-any.whl.zip

absl_py-0.14.0-py3-none-any.whl.zip

2024-06-17

基于python实现的BP神经网络和rbf神经网络源码.zip

一、BP神经网络的基本原理 结构组成:BP神经网络通常由输入层、隐藏层和输出层组成。每一层由多个神经元构成,神经元之间通过权重连接。 前向传播:输入信号通过输入层进入网络,经过隐藏层神经元的处理,最终到达输出层并产生输出结果。神经元的输出是其输入信号与对应权重的乘积之和经过激活函数后的结果。 误差反向传播:当网络的实际输出与期望输出不一致时,会产生误差。BP算法通过反向传播误差来更新网络中的权重和偏置,以减小误差。具体地,误差从输出层开始逐层反向传播至输入层,每层神经元的权重和偏置都根据误差的梯度进行更新。

2024-06-17

信号与系统大作业-图像处理 实现了直接滤波法维纳滤波法最小二乘滤波法LR递归法matlab源码.zip

信号与系统大作业--图像处理 实现了直接滤波法、维纳滤波法、最小二乘滤波法、LR递归法。

2024-06-17

计算机网络基础之tcp服务器简单实现+说明文档.zip

传输控制协议(TCP) TCP是一种面向连接的、可靠的、基于字节流的传输层协议。它负责将数据分割成较小的数据段(或称为"包"),并在发送端对数据进行排序和流量控制,以确保数据能够可靠地传输到目标端。 TCP提供了一种可靠的、有序的和错误校验的数据传输方式,适用于需要可靠传输的应用,如网页浏览、电子邮件等。

2024-06-17

第十六届华为杯数学建模竞赛F题第一名论文附代码.zip

第十六届华为杯数学建模竞赛F题一等奖第一名论文附代码。 比赛出结果之后,很多人联系我们希望能参考我们的论文和代码,因此我们把论文和代码直接共享,希望能帮助到有需要的同学。

2024-06-17

基于Docker-compose的Elasticsearch集群每个节点均是独立docker-compose配置而成源码.zip

本仓库使用docker-compose构建elasticsearch 7.1.0集群 由于空文件夹提交会被忽略,所以把启动带的日志和连接节点信息也带进来了,使用前需要删除各数据目录下的文件,请保留数据目录和日志目录。 为了对比哪些需要删除,请参考如下目录结构(均需要保留,.sh后缀的脚本可以保留)

2024-06-17

AoikPourTable-0.1.0-py2.py3-none-any.whl.zip

AoikPourTable-0.1.0-py2.py3-none-any.whl.zip

2024-06-17

AoikImportUtil-0.2-py2.py3-none-any.whl.zip

AoikImportUtil-0.2-py2.py3-none-any.whl.zip

2024-06-17

AoikBookmarksToFiles-0.1.3-py2.py3-none-any.whl.zip

AoikBookmarksToFiles-0.1.3-py2.py3-none-any.whl.zip

2024-06-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除