C语言 数据在内存中的存储

目录

1.整数在内存中的存储

2.大小端字节序和字节序判断

3.浮点数在内存中的存储


1.整数在内存中存储

在之前关于操作符的文章中,就讲解过了下面的内容:
 
整数的2进制表示方法有三种,即原码、反码和补码

有符号的整数,三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示

“负”,最高位的一位是被当做符号位,剩余的都是数值位。

正整数的原、反、补码都相同。

负整数的三种表示方法各不相同。

  • 原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。
  • 反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
  • 补码:反码+1就得到补码。

对于整形来说:数据存放内存中其实存放的是二进制的补码。
 为什么呢?
 
在计算机系统中,数值一律用补码来表示和存储

原因在于,使用补码,可以将符号位和数值域统一处理;

同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是

相同的,不需要额外的硬件电路。

2.大小端字节序和字节序判断

当我们了解了整数在内存中存储后,我们调试看一个细节:

#include <stdio.h>

int main()
{
    int a = 0x11223344;

    return 0;
}

调试的时候,我们可以看到在a中的0x11223344这个数字是按照字节为单位,倒着存储的。这是为

什么呢?

2.1什么是大小端?

其实超过一个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们

分为大端字节序存储和小端字节序存储,下面是具体的概念:
 
大端(存储)模式:

是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
 
小端(存储)模式:

是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。

上述概念需要记住,方便分辨大小端。

2.2为什么要有大小端?

为什么会有大小端模式之分呢?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为

8 bit位,但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的

编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于

一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存

储模式。

例如:一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,

0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即

0x0011中。小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。

很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模

式。

2.3联系

2.3.1练习1

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。

//代码1
#include <stdio.h>
int check_sys()
{
    int i = 1;
    return (*(char *)&i);
}

int main()
{
    int ret = check_sys();
    if(ret == 1)
    {
        printf("小端\n");
    }
    else
    {
        printf("大端\n");
    }
    return 0;
}
 
 
//代码2
int check_sys()
{
    union
    {
        int i;
        char c;
    }un;
    un.i = 1;
    return un.c;
}

代码解释:

代码一
 
1. 原理:在 check_sys 函数中, int i = 1;  定义了一个整型变量 i  ,值为1 。 (char *)&i  将 i 的地

址强制转换为指向 char 类型的指针,由于 char 类型只占一个字节,当通过 *(char *)&i  去取值

时,在小端模式下,低地址存放低位字节,1的二进制表示为 00000000 00000000 00000000

00000001  ,低地址处字节内容是 0x01  ,所以返回1 ;在大端模式下,高地址存放低位字节,低

地址处字节内容是 0x00  ,返回0 。

2. 输出:在小端模式机器上输出 小端  ,在大端模式机器上输出 大端  。
 
代码二
 
1. 原理:利用了共用体( union )的特性,共用体中所有成员共享同一块内存空间 。 un.i = 1;  给

整型成员 i 赋值为1 ,由于共用体共享内存,此时 char 类型成员 c  对应的内存就是 i  内存的起始

部分。在小端模式下, c 取到的值是1 ;在大端模式下, c 取到的值是0 。然后通过 return

un.c;  返回值用于判断字节序 。

2. 输出:和代码一类似,在小端模式机器上输出 小端  ,在大端模式机器上输出 大端  。

2.3.2练习2

#include <stdio.h>
int main()
{
    char a = -1;
    signed char b = -1;
    unsigned char c = -1;
    printf("a=%d,b=%d,c=%d",a,b,c);
    return 0;
}

- 输出:在大多数系统中, a  和 b  输出为 -1  , c  由于是无符号字符型,其值在内存中表示为全1

(与有符号 -1 的二进制补码相同 ),以 %d  格式输出时会进行整型提升,输出 255   。即输出类

似 a=-1,b=-1,c=255   。

3.浮点数在内存中的存储

常见的浮点数:3.14159、1E10等,浮点数家族包括:float、double、long double类型。

浮点数表示的范围:float.h中定义

3.1 练习

#include <stdio.h>
int main()
{
    int n = 9;
    float *pFloat = (float *)&n;
    printf("n的值为: %d\n",n);
    printf("*pFloat的值为: %f\n",*pFloat);

    *pFloat = 9.0;
    printf("n的值为: %d\n",n);
    printf("*pFloat的值为: %f\n",*pFloat);
    return 0;
}

输出什么?

3.2浮点数的存储

上面的代码中,n 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这

么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形

式:
V = (-1)^S * M * 2^E

 
- (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数

- M表示有效数字,M是大于等于1,小于2的

- 2^E表示指数位

举例来说:

十进制的5.0,写成二进制是101.0,相当于1.01×2^2。

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
 

IEEE 754规定:

对于32位的浮点数(float),最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M。

对于64位的浮点数(double),最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M。

3.2.1 浮点数存储的过程

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后

面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这

样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以

后,等于可以保存24位有效数字。
 
至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)

这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,

我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须

再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,

2^10的E是10,所以保存成32位浮点数时,必须保存成10 + 127 = 137,即10001001。

3.2.2浮点数取的过程

指数E从内存中取出还可以再分成三种情况:
 
E不全为0或不全为1(常规情况):

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将

有效数字M前加上第一位的1。

比如:0.5的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则1.0*2^(-1),

其阶码为-1 + 127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位

00000000000000000000000,则其二进制表示形式为:

1 0 01111110 00000000000000000000000

E全为0:

这时,浮点数的指数E等于1 - 127(或者1 - 1023)即为真实值,有效数字M不再加上第一位的1,

而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

1 0 00000000 001000000000000000000000

E全为1:

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

1 0 11111111 000100000000000000000000

好了,关于浮点数的表示规则,就说到这里。

3.3题目解析

下面,让我们回到一开始的练习

先看第1环节,为什么9还原成浮点数,就成了 0.000000 ?

9以整型的形式存储在内存中,得到如下二进制序列:

1 0000 0000 0000 0000 0000 0000 0000 1001

首先,将9的二进制序列按照浮点数的形式拆分,得到第一位符号位s = 0,后面8位的指数E =

00000000,最后23位的有效数字M = 000 0000 0000 0000 0000 0000 1001。

由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:

V = (-1)^0 × 0.000000000000000000001001×2^(-126) = 1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。
 
再看第2环节,浮点数9.0,为什么整数打印是 1091567616 

首先,浮点数9.0等于二进制的1001.0,即换算成科学计数法是: 1.001×2^3

所以: 9.0 = (-1)^0 * (1.001) * 2^3,

那么,第一位的符号位S = 0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3 + 127

= 130,即10000010

所以,写成二进制形式,应该是S + E + M,即

1 0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是

1091567616。
 

好了,以上内容就是关于整数和浮点数在内存中的存储原理,特别是浮点数的存储,比较繁琐,希望大家能够理解,感谢大家的观看!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值