自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 文献阅读2

论文提出的 MulT 模型通过跨模态注意力机制实现多模态信息融合,不依赖数据对齐。**应用:**论文提出的 UNet++ 通过重新设计跳跃路径,使用嵌套密集卷积块连接编码器和解码器,缩小了两者特征图的语义差距,相比传统 U-Net 直接融合语义差异大的特征图,能使优化器面临更简单的学习任务,从而提升分割精度。解码器引入跨模态注意力:在解码器上采样过程中,以编码器特征为键值、解码器特征为查询,实现 CT 到 MRI 的模态映射,参考 Transformer 解码器中编码器 - 解码器注意力的设计。

2025-05-31 17:04:04 310

原创 深度学习(序列模型)

有些问题,输入数据 X 和 输出数据 Y 都是序列,但有时也会不一样长,比如语音识别问题。还有另一些问题,只有 X 或 只有 Y 是序列,比如音乐生成等。

2025-05-30 20:18:58 603

原创 文献阅读及代码学习

此外,为了稳定训练,还引入了基于判别器的特征匹配损失(Feature Matching Loss),其计算公式为L FM (G,D k)=E (s,x) ∑ i=1TN i1 [ Dk(i) (s,x)−Dk(i) (s,G(s)) 1 ,其中T是判别器的总层数,N i是每层的元素数量。这 3 个判别器分别在不同尺度上对图像进行判别,其中操作在最粗尺度的判别器具有最大的感受野,能从更全局的视角审视图像,进而引导生成器生成全局一致的图像;金字塔结构:处理不同分辨率的图像(原始、1/2、1/4 下采样)

2025-05-23 21:22:04 664

原创 深度学习(卷积层网络)

对各层都使用风格代价函数,会让结果变得更好,在神经网络中使用不同的层,包括类似边缘的低级特征的层,以及高级特征的层,使得神经网络在计算风格时能够同时考虑到这些低级和高级特征。深层的隐藏单元会看到一张图片更大的部分,在极端的情况下,可以假设每一个像素都会影响到神经网络更深层的输出,靠后的隐藏单元可以看到更大的图片块。改变这个网络所有层的参数,得到不同的编码结果,用反向传播来改变这些所有的参数,以确保满足条件(相同的人,d 小,不同的人,d 大)

2025-05-23 15:55:22 849

原创 文献及代码学习

CycleGAN 核心思想是在无配对数据时,引入两个映射函数 G(X→Y)和 F(Y→X),利用对抗损失使生成图像与目标域分布一致,同时通过循环一致性损失确保 F (G (X))≈X 和 G (F (Y))≈Y,以此约束映射合理性,解决传统 GAN 在无配对数据下的映射不确定性和模式崩溃问题,实现风格迁移、物体变形等任务的跨域图像转换。以下是通过生成对抗网络(GAN)训练MNIST数据集(主要包含手写数字0 - 9的图像)的实现。2.拆解论文内容,剖析网络架构的细节,包括生成器和判别器的各层输出等。

2025-05-17 17:42:22 847

原创 深度学习.

【代码】深度学习.

2025-05-17 00:08:53 1043

原创 文献综述GAN及patchGAN

摘要图像到图像转换是计算机视觉和图形学领域的重要研究方向,旨在将一种图像表示转换为另一种。本文综述了四篇相关论文,涵盖基于条件对抗网络、循环一致对抗网络、空间自适应归一化以及多模态转换的方法。这些研究推动了图像转换技术在生成逼真图像、处理无配对数据、融合语义与风格信息和实现多模态输出等方面的发展,为后续研究奠定了基础。关键词 :图像到图像转换;生成对抗网络;条件对抗网络;循环一致对抗网络;空间自适应归一化一、引言。

2025-05-11 12:38:08 1001

原创 深度学习333

那么上面第二种分类器(训练误差15%,验证误差16%),15%的错误率对训练集来说也是非常合理的,偏差不高,方差也非常低。在非常深的神经网络中,权重只要不等于 1,激活函数将会呈指数级递增或者递减,导致训练难度上升,尤其是梯度与 L 相差指数级,梯度下降算法的步长会非常非常小,学习时间很长。λ 增大时,整个神经网络会计算离线性函数近的值,这个线性函数非常简单,不是复杂的高度非线性函数,不会发生过拟合。深度学习是一个典型的迭代过程,迭代的效率很关键,创建高质量的训练数据集,验证集和测试集有助于提高循环效率。

2025-05-11 00:59:25 787

原创 Pytorch框架学习

注意Pytorch中内置的损失函数的参数和tensorflow不同,是y_pred在前,y_true在后,而 Tensorflow是y_true在前,y_pred在后。对于二分类模型,通常使用的是二元交叉熵损失函数nn.BCELoss (输入已经是sigmoid激活函数 之后的结果) 或者 nn.BCEWithLogitsLoss (输入尚未经过nn.Sigmoid激活函数)。dataset定义了数据集的内容,它相当于一个类似列表的数据结构,具有确定的长度,能够用索 引获取数据集中的元素。

2025-05-11 00:29:39 697

原创 GAN和扩散模型

1.生成器(Generator)(1)功能:负责生成新的数据样本。(2)结构:通常是一个深度神经网络,输入为低维向量(如随机噪声),输出为高维向量(如图片、文本或语音)。(3)训练目标:生成尽可能真实的数据,以欺骗判别器。2.判别器(Discriminator)(1)功能:负责区分输入的数据是真实数据还是由生成器生成的假数据。(2)结构:同样是一个深度神经网络,输入为高维向量(如图片、文本或语音),输出为一个标量,表示输入数据的真实性概率。

2025-04-27 16:35:35 957

原创 第二周学习汇报

学习技术汇报。

2025-04-26 23:18:39 813

原创 学习汇报(论文综述+学习技术)

该模型以 CycleGAN 为框架,融入 StyleGAN2 的精细控制特点,通过修改鉴别器结构并添加混合注意力机制,实现了肝脏肿瘤病变图像的模态转换,生成的数据能有效提高分割网络的准确性。未来,通过不断探索新的技术方法、加强多学科合作和优化人才培养模式,有望进一步提升医学图像处理的水平,为医学诊断和治疗提供更有力的支持,推动医疗卫生事业的发展。不同模态医学图像之间的融合和配准也存在困难,由于成像机制不同,图像的像素强度、体素大小、图像方向和视场等存在差异,导致多模态配准效果不如单模态配准。

2025-04-16 21:20:14 913 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除