学习汇报(论文综述+学习技术)

(1)

关于医学图像处理的论文综述 

一、引言

医学图像处理作为医学与计算机科学的交叉领域,近年来取得了显著进展。随着医疗数据的增长和人工智能技术的发展,医学图像处理在疾病诊断、治疗方案制定及医学研究等方面发挥着日益重要的作用。这十篇论文从不同角度对医学图像处理进行了研究。

二、研究现状

医学图像处理领域仍面临诸多挑战。数据方面,医学数据标注成本高、标注难度大,且存在数据不平衡、数据隐私保护等问题,限制了模型的训练和性能提升 。模型的可解释性在临床应用中至关重要,但目前大多数深度学习模型为黑盒模型,医生难以理解其决策过程,影响了模型的临床信任度和应用推广 。

不同模态医学图像之间的融合和配准也存在困难,由于成像机制不同,图像的像素强度、体素大小、图像方向和视场等存在差异,导致多模态配准效果不如单模态配准 。此外,医学图像处理技术在实际临床应用中的转化效率有待提高,部分技术在实验室表现良好,但难以在临床环境中大规模推广和应用 。

三、医学图像处理技术

2.1 深度学习在医学图像中的应用

卷积神经网络(CNN)是医学图像分割的标准模型,如U - Net 及其变体,在医学图像分析中广泛应用。经典的U 型网络U-Net由具有跳跃连接的对称的编码和解 码器的网络组成,已成为医学图像分析的常见模 型。Transformer 则凭借注意力机制,在大规模数据集下展现出优于 CNN 的性能,如 Vision Transformer (ViT) 将图像分割成序列进行全局建模 。

在医学图像分类方面,由于数据量有限,使用迁移学习。通过加载在其他大规模数据集上训练的预训练权重,对本地网络进行微调,可提高模型收敛速度和分类准确性。

2.2 多模态学习技术

多模态学习旨在融合医学领域中的图像、音频、文本等多种数据形式,提升模型对医学数据的理解和处理能力。潘依乐、高永彬针对 MRI 数据获取困难的问题,提出 CSCGAN 生成网络模型。该模型以 CycleGAN 为框架,融入 StyleGAN2 的精细控制特点,通过修改鉴别器结构并添加混合注意力机制,实现了肝脏肿瘤病变图像的模态转换,生成的数据能有效提高分割网络的准确性 。

生琳、王朝立介绍了多模态特征融合的多种方式,包括数据层、特征层的早期融合和任务层的晚期融合。重要的是特征融 合,即如何利用每种模态数据中所提取到的特征, 将每种模态有效融合,去除冗余信息,充分发挥每 种模态的互补性。

2.3 自监督学习技术

自监督学习在医学图像处理中用于解决标注数据不足的问题。韩宇飞提出基于自监督学习的医学图像分割方法,通过设计特定的代理任务,让模型从大规模未标记数据中学习有用的特征表示。如基于重建的代理任务,通过对图像进行变换和重建,使模型学习到图像的特征;对比学习则通过最大化正样本相似度、最小化负样本相似度,提升模型区分不同样本的能力 。

王光晨提出基于自监督原型网络的少样本三维医学图像分割算法(SPNet)。该算法通过自监督局部对比学习提升模型特征抽取和生成原型的能力,引入上下文关系嵌入模块增强对前景和背景上下文关系的建模,提出新的相似图计算方法提高分割精度,在少样本三维医学图像分割任务中取得了良好效果 。

2.4 基于视觉认知的图像处理算法

赵世轩受视觉认知机制启发,提出一系列改进的深度学习模型。基于视觉引导搜索理论的改进深度学习模型,用于新冠肺炎病变区域分割。该模型以串行方式嵌入空间和通道两部分注意力,能自适应生成多阶段注意力图,增强了深度学习的可解释性。

基于视知觉组织规则的半监督单样本学习方法,应用于眼底 OCTA 图像血管分割。该方法通过构建基于知觉组织规则的模型和半监督学习方法,增强了血管曲线结构的连贯性表达,提高了模型在极少标注数据情况下的收敛性。

四、医学图像处理课程教学改革

杨娜、胡亚南等针对医学图像处理课程存在的教学内容与应用需求脱节、实践项目缺乏创新性、考核评价方式单一等问题,进行了基于创新能力培养的混合式教学改革实践。构建了“学堂云 + 雨课堂” 的混合式教学模式,设计 “三阶四层” 的实践教学系统,注重 “过程 + 效果 + 创新” 的考核评价体系,有效提升了学生的创新实践能力和学习效果 。

在课程资源组织方面,以临床案例呈现教学内容,重构知识体系,搭建层次化实验教学体系;实践教学系统涵盖医学图像数据基础、基本医学图像处理、进阶医学图像处理和高级医学图像处理四个层次,将基本理论技能、综合设计能力和创新实践能力培养贯穿其中;混合式教学模式拓展了教学时空,满足学生个性化自主学习需求;新的考核评价体系强化了过程评价,弱化期末考核权重,全面评估学生学习效果 。

五、医学图像处理专利现状

李利华对人工智能辅助医学图像处理专利进行分析,研究表明该领域专利申请数量呈上升趋势,反映出行业对相关技术创新的重视和投入增加。专利技术主要涉及图像识别、图像分割、图像重建等方面,涵盖多种疾病的诊断和治疗应用。但同时也存在专利布局不均衡、核心技术有待突破等问题,部分技术在实际临床应用中的转化效率较低 。

六、医学图像处理在肾脏疾病等领域的诊断价值

阿丽米热・阿不都热依木等研究了医学图像处理技术在肾脏疾病中的诊断价值。通过对肾脏超声、CT、MRI 等医学图像的处理和分析,能够清晰显示肾脏的形态、结构和功能信息,帮助医生准确诊断肾脏疾病,如肾囊肿、肾结石、肾癌等。

在肾脏疾病诊断中,图像分割技术能够精确分割出肾脏的病变区域,便于医生观察和分析;图像增强技术可以提高图像的清晰度和对比度,突出病变特征;图像配准技术则有助于对不同时间或不同模态的肾脏图像进行对比分析,及时发现疾病的变化。

七、结论

综合十篇论文可知,医学图像处理领域在技术创新、教学改革和临床应用等方面取得了显著进展,但也面临着数据、模型可解释性和临床转化等挑战。未来,通过不断探索新的技术方法、加强多学科合作和优化人才培养模式,有望进一步提升医学图像处理的水平,为医学诊断和治疗提供更有力的支持,推动医疗卫生事业的发展。

多模态影像在脑部疾病研究中的论文综述
一、引言
医学影像技术发展促使多模态影像在脑部疾病研究中广泛应用。不同模态影像能提供脑部多维度信息,对疾病诊断和治疗意义重大。两篇论文从不同角度展示了多模态影像在脑部疾病研究中的价值,前者聚焦脑部疾病图像检索系统,后者专注于脑出血早期血肿扩大的预测。

二、多模态影像在脑部疾病检索中的应用
2.1 检索系统设计
黎维娟等人构建的多模态影像脑部疾病检索系统,涵盖脑出血、脑膜瘤、垂体瘤,以及 MR、CT 两种模态的脑部图像数据。系统设有图像信息库和特征库,具备自动与半自动提取颅内组织、定位病灶区域的功能,还搭建了检索用户界面。检索时,先依据查询图像的部位、模态、方位信息筛选子库,再进行特征相似度比较,提升了检索效率 。
2.2 关键技术
2.2.1 脑部图像细分类
研究采用基于支持向量机(SVM)的方法对脑部图像进行细分类。针对 MR 加权图像,按组织形状和解剖结构变化分为 14 类,运用多尺度平稳小波变换和傅立叶带亮度描绘子提取特征,并进行优化。该方法有效缩小检索空间,提高检索效率,辅助医生精准检索 。
2.2.2 脑部疾病区域自动定位
利用脑部图像对称性质,结合霍特林变换,提出自动定位及分割脑部疾病区域的方法。先通过霍特林变换找对称轴、旋转图像,再依据不对称度定位病灶,最后用活动轮廓模型分割。此方法速度快、无需模板,对不同模态和疾病图像均有效,减轻了医生标注负担。
三、多模态影像在脑出血预测中的应用
3.1 预测模型构建
陈萍等人提出联合文本与图像多模态特征的脑出血预测模型。利用 Pyradiomics 软件包从血肿和水肿区域提取多种图像特征,结合临床随访文本信息,分别筛选特征后融合,输入支持向量机(SVM)和逻辑回归(LR)等分类器进行训练和测试,以此预测脑出血患者早期血肿扩大情况。
3.2 模型优化与验证
基于 Vision Transformer(VIT)模型,提出多模态特征频域学习网络的脑出血预测模型。将临床文本信息与 VIT 的 Patch Embedding 模块结合,加入频域噪声特征消除模块处理图像噪声。经对比和消融实验验证,该模型在准确率等指标上表现出色,能精准预测脑出血早期血肿扩大 。
四、挑战与展望
4.1 面临的挑战
多模态影像在脑部疾病研究中面临挑战。医学图像数据量大且复杂,不同模态图像的特征融合与选择难度大,如何优化特征组合、提升模型性能和泛化能力是难题。数据异质性和噪声影响模型准确性,患者信息隐私保护也不容忽视。
4.2 未来展望
未来,多模态影像在脑部疾病研究中前景广阔。技术上,深度学习和人工智能发展将催生更先进的算法和模型,提升多模态影像分析能力。临床应用方面,将与临床实践深度融合,推动个性化医疗发展,还可能与远程医疗等新兴领域结合,为患者提供更优质的医疗服务。
五、结论
多模态影像技术在脑部疾病研究已取得显著成果,在疾病检索和预测方面意义重大。但目前仍面临挑战,未来需加强技术创新和临床应用研究,以更好地服务于脑部疾病的防治工作。

《多模态影像脑部疾病检索研究_黎维娟》

《基于多模态特征分析学习的脑出血预测方法_陈萍》

(2)

深度学习

1.神经网络及神经网络的监督学习

2. 二分类

3. 逻辑回归

4. 逻辑回归的代价函数

5.梯度下降法

                           

6.导数

导数定义:函数在某一点的斜率,在不同的点,斜率可能是不同的。
7. 计算图的导数计算


8. 逻辑回归中的梯度下降(※)
9. m个样本的梯度下降
10. 向量化


11. 向量化的更多例子
12. 向量化 logistic 回归


13. 向量化 logistic 回归梯度输出


14. numpy 广播机制

例一

例二

15. 关于 python / numpy 向量的说明

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值