DAMODEL丹摩|丹摩平台操作指南

目录

前言

一、丹摩平台地址

二、注册丹摩平台

三、丹摩平台介绍

(一)主页

(二)资源模块

(三)费用模块

(四)管理模块

(五)支持模块

四、总结


前言

本文章主要介绍丹摩平台的使用流程,包括网站地址,网站注册流程以及使用教程,详细如下,咱们接着往下看


一、丹摩平台地址

丹摩平台的网址为:丹摩DAMODEL|让AI开发更简单!算力租赁上丹摩!


二、注册丹摩平台

(1)进入首页后,点击"去注册"

(2)填写账号密码,输入手机号后点击"获取验证码",填入获取到的验证码,勾选用户协议后点击下方"立即注册"按钮即可注册成功

(3)注册成功后回到登录页面,输入账号密码后点击"立即登录"按钮即可登录丹摩平台

(4)进入丹摩平台首页


三、丹摩平台介绍

(一)主页

主页包含的信息如下:

  • GPU云实例

该模块记录当前账号上的GPU云实例信息,包含总实例数,运行中的数量,即将到期数量和即将释放的数量

  • 存储空间

该模块记录存储空间的使用情况,包含累计使用量,累计镜像使用量和累计文件存储使用量,以及每小时存储空间的使用情况

  • 费用

该模块记录当前账号上的费用信息,包含账户余额,以及今天消费的金额情况

  • 常用文档

该模块中记录丹摩平台常用的操作文档,可以点击文档浏览丹摩平台的相关知识点,非常方便新手入门使用

(二)资源模块

该模块详细记录当前账户下的资源情况,包含GPU云实例,云磁盘使用情况,文件存储情况,以及镜像目录

  • GPU云实例

在该页面可以创建云实例,同时也记录者当前账户下已经创建的云示例信息,包含实例名称,状态,规格等信息

  • 云磁盘

该页面下可以创建云磁盘,同时也记录着当前已经创建的云磁盘信息,与GPU云实例页面类型,包括云磁盘ID,状态和规格等信息

  • 文件存储

文件存储页面,可以创建文件夹,以及上传云实例相关的文件,同时也记录着当前存储存储的总是要量,今日峰值使用量以及预计扣费的信息

  • 镜像目录

镜像目录中,与文件存储页面类似,记录着镜像名称,镜像大小和状态等信息,同时也有汇总记录,包含镜像总使用量,今日镜像峰值使用量和预计扣费信息

(三)费用模块

该模块中包含订单管理,账单管理和资金关系

  • 订单管理

订单管理中记录着当前账户下的订单信息,包含订单号,创建时间和订单状态等信息,能进一步了解当前账户下所以的资源信息,同时也对使用丹摩平台所产生的费用有了一定的了解

  • 账单管理

账单管理中记录每个月的费用情况,同时也能查询每笔订单的使用明细,费用一目了然

  • 资金管理

资金管理中记录当前账户下的余额信息和代金券余额,同时也能进行账户余额充值和代金券兑换等操作,并且记录每一笔充值兑换操作的信息

(四)管理模块

管理模块包含用户中心,用户管理和密钥对

  • 用户中心

用户中心中记录当前账号的基本信息,实名认证和账号安全,基本信息包含账号ID,账号类型和注册时间,实名认证则是对该账号进行实名认证,可以个人实名,也能企业实名,根据实际需求而定;

同时也能将邀请链接发给朋友,让他们也加入体验丹摩这个平台

  • 用户管理

用户管理界面可以创建子账号,同时也记录着子账号信息,包含用户名,昵称和创建时间等信息

  • 密钥对

在这个页面可以创建密钥对,同时也记录着已经创建的密钥对信息,包含密钥对名称,密钥对指纹和创建时间等信息

(五)支持模块

目前在支持模块中只有工单操作,在这个页面可以创建工单,同时也能看到已创建的工单信息,包含全部的工单数,处理中的工单数和待确认的工单数等信息


四、总结

这篇文章详细介绍了丹摩平台的使用流程和平台的各个功能模块。首先,文章从注册流程入手,帮助用户快速入驻平台。接着,对丹摩平台的核心页面和主要功能模块进行了分解,包括主页概览、资源管理、费用管理、账户管理和支持模块等。每个模块的功能细节如GPU云实例、文件存储、订单管理、用户管理、密钥管理等也都清晰地描述了操作方法与用途,帮助新用户理解和掌握平台的各项操作。总体来说,文章结构清晰、内容丰富,适合新手用户快速上手丹摩平台,有助于用户熟练掌握从资源配置到费用管理的各项功能。

### YOLO Model in Deep Learning for Computer Vision YOLO (You Only Look Once) 是一种用于目标检测的深度学习框架,其设计旨在实现快速而高效的目标识别和定位。作为一种端到端的实时对象检测系统,YOLO 将整个图像划分为网格,并预测每个单元格中的边界框及其对应的类别概率[^2]。 #### 工作原理 YOLO 的核心思想在于将目标检测视为单一的回归问题,直接从输入图像映射至边界框坐标以及相应的类别的置信度分数。这种方法显著提高了检测速度并减少了推理时间。具体来说,YOLO 使用卷积神经网络(CNN)提取特征图,并通过全连接层输出固定数量的边界框和类别分布[^3]。 以下是 YOLO 模型的一些关键特性: - **统一架构**:YOLO 在一次前向传播过程中完成所有的计算操作,从而实现了高效的运行效率。 - **全局上下文感知**:由于在整个图片上应用 CNN 进行特征提取,因此能够更好地理解场景的整体结构[^1]。 - **高精度与低延迟平衡**:相比其他传统方法如 R-CNN 系列,YOLO 提供了更快的速度同时保持较高的准确性。 #### 实现细节 对于实际部署而言,可以采用预训练权重初始化模型参数以加速收敛过程;此外还可以利用数据增强手段提升泛化能力。例如,在表格检测任务中,《Yolo-table: disclosure document table detection with involution》一文中提到的方法引入了专门针对表格布局特性的改进措施——即通过退化解耦增强了对复杂排列模式的学习效果,并借助 FPN 结构进一步提升了性能表现[^4]。 下面是一个简单版本的 PyTorch 实现代码片段: ```python import torch from torchvision.models import yolov5s def load_yolov5_model(): device = 'cuda' if torch.cuda.is_available() else 'cpu' model = yolov5s(pretrained=True).to(device) return model.eval() model = load_yolov5_model() input_tensor = ... # Prepare your input tensor here. output = model(input_tensor) ``` 此段代码展示了如何加载预先训练好的 YOLOv5 模型实例,并对其进行评估模式切换以便后续测试用途。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值