将生成式人工智能有效整合到可持续发展战略中
关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Teddy, Generative Ai Integration, Sustainability Strategies, Data Challenges, Technology Integration, Scalability Challenges]
导读
Generative AI可以通过简化环境数据分析、模拟新设计以及在短时间内评估产品生命周期的过程,为可持续发展项目提供实质性支持。本次会议涵盖了可持续发展项目中生成式AI的基础知识,包括如何确保与更广泛的组织目标保持一致。了解Amazon Bedrock如何帮助亚马逊云科技客户Mercado Diferente每月减少35吨有机食品浪费。
演讲精华
以下是小编为您整理的本次演讲的精华。
在可持续发展的领域中,每一分努力都是弥足珍贵的,而一场由生成式人工智能(generative AI)所推动的革命正在酝酿之中。这正是亚马逊云科技 re:Invent 2024大会的核心主题,届时业界领导者和创新者将齐聚一堂,探索这项尖端技术的变革潜力。
Rahul Sarin是亚马逊云科技全球跨行业和可持续发展解决方案的远见卓识的领导者,他登台阐述了生成式人工智能与可持续发展战略之间的微妙关系。凭借对客户面临挑战的深刻理解,他认识到一种普遍情绪——渴望踏上可持续发展之旅,但缺乏将技术融入战略的明确方向。
Rahul描绘了一幅生动的创新景象,生成式人工智能正在各行各业留下深刻印记。从生成简化开发流程的代码,到打造重塑客户体验的身临其境的用户界面,其应用前景无垠。制造商利用其力量设计具有弹性和可持续性的产品,而企业则借助它提高生产力,以前所未有的效率从海量数据中提取见解。
但生成式人工智能的真正潜力远不止于此,正如Rahul所阐明的,它对解决可持续发展挑战也产生了深远影响。金融、供应链、营销和销售——没有一个行业能够幸免于这股变革力量的影响。纳斯达克(NASDAQ)作为一家开拓性的客户,已经构建了一个基于生成式人工智能的解决方案,为其客户构建风险评分,将可持续发展参数如碳足迹和人力价值链纳入考量。
其他客户在农业和海运等不同领域也在推动创新的边界,利用生成式人工智能来解决长期以来难以用传统方法解决的复杂挑战。在金融领域,一个长期存在的障碍——投资组合优化——正在获得前所未有的精准解决。私募股权公司一直在努力管理多个投资组合,并不断寻找有前景的投资机会,如今正利用生成式人工智能通过可持续发展的视角进行全面评估,确保其决策与价值观相一致。
Rahul深入探讨了典型ESG工作流程的细节,突出了长期困扰该行业的痛点。从市场趋势分析和风险评估,到数据收集、验证和报告,每一个步骤都存在着自身的挑战。生成式人工智能应运而生,为前进之路带来曙光。
客户正利用其力量总结复杂分析、识别专利,并驾驭不断演进的ESG合规性环境。法规和标准不再是无法逾越的障碍,生成式人工智能聊天机器人使组织能够识别数据缺口,并使其实践与新要求保持一致,从而简化了过去需要数月时间才能完成的流程。
然而,Rahul也坦率地指出了集成生成式人工智能所带来的运营挑战。数据质量一直是人工智能领域的一个永恒关注点。“垃圾输入,垃圾输出”这一格言在此深深回响,凸显了构建健壮的生成式人工智能应用程序需要坚实的数据基础。
可持续发展实践的数字化转型曾经是一个手动和分散的过程,如今已经迈入了数据驱动决策的新时代。然而,这一转变也带来了一系列新的挑战——数据集成、可扩展性和治理成为了至关重要的考虑因素。
Rahul的见解强调了全面数据平台的重要性,能够无缝存储和查询结构化、非结构化和向量数据。整合来自ERP系统和全球供应商网络等不同数据源的数据是一个需要创新解决方案的挑战。而在这一切的核心,是健全的数据治理的必要性,确保访问控制、数据线索和敏感信息的完整性。
随着Rahul启发性的演讲接近尾声,舞台为Paolo Mun Corris铺平了道路。Paolo是巴西在线杂货创业公司Mercado de Frente的联合创始人兼首席技术官。Paolo的使命植根于可持续发展的原则——让健康食品触手可及,并与食品浪费这一祸害抗争。
在巴西和整个拉丁美洲,一个惊人的现实展现在眼前——杂货市场规模高达2000亿美元,但由于外观缺陷,30%的农产品被视为不适合销售而被丢弃。Paolo的愿景是颠覆这一范式,利用技术弥合丰裕与可及性之间的鸿沟。
Mercado de Frente不仅仅是一家普通的在线杂货店,它是一个建立在个性化和减少浪费原则之上的平台。通过一种机器学习算法,客户可以开启一段量身定制的旅程,他们的偏好和饮食限制塑造了完美的杂货盒。这种创新方法不仅确保了获得新鲜的本地农产品,而且还通过接纳以前被视为不可接受的外观缺陷来最小化浪费。
但Paolo的抱负并不仅限于杂货配送领域。他意识到了一个更深层次的挑战——数百万拉丁美洲家庭在规划膳食和利用食物方面的困境。令人震惊的是,78%的家庭在决定做什么菜时都会感到困扰,而15-20%的杂货购买最终会被浪费,成为“冰箱失明症”的牺牲品。
正是这一认识催生了Teddy,这是第一个基于WhatsApp的人工智能厨房助理,WhatsApp已深深植根于拉丁美洲的通信生态。Teddy不仅仅是一个菜谱生成器,它是一个对话式伙伴,让用户能够根据食材、饮食限制和偏好要求膳食建议。
凭借生成式人工智能和个性化的力量,Teddy能够提供本地化的食谱推荐、量身定制的膳食计划,甚至就如何储存和利用外观不佳的农产品提供指导。用户只需拍下冰箱内容的照片,Teddy就会以丰富的烹饪灵感作出回应,最大限度地减少浪费,发挥每种食材的潜力。
Teddy的影响力是巨大的。在推出仅四周之后,Mercado de Frente就收到了70万条来自活跃用户的消息,寻求食谱、膳食计划和饮食指导。高度活跃的用户每周与Teddy互动超过20次,这充分证明了该平台能够满足一个基本需求。
但真正的胜利体现在切实的成果上——客户流失率下降15%,平均订单价值上升,因为客户开始接受Teddy提供的便利性和个性化体验。Paolo的愿景正在成为现实,让拉丁美洲各地的家庭能够做出明智的决策,减少浪费,拥抱更加可持续的食物消费方式。
随着Paolo引人入胜的讲述接近尾声,接力棒传递给了亚马逊云科技的解决方案架构师Bianca。她在指导Mercado de Frente应对技术挑战方面发挥了关键作用。Bianca的专长在于解开支撑Teddy的复杂架构,这是一件创新与集成的杰作。
Bianca呼应了Rahul早先的观点,强调数据是生成式人工智能应用程序的真正差异化因素。选择合适的基础模型和工具仅仅是第一步,真正的魔力在于利用客户数据来定制和提升用户体验。
Bianca概述了实现这种定制化的四种关键策略:提示工程(prompt engineering)、检索增强生成(retrieval-augmented generation,RAG)、微调(fine-tuning)和持续预训练(continued pre-training)。每种方法都为量身定制生成式人工智能体验提供了独特的途径,从精心设计提示以丰富模型响应,到使用客户特定数据对基础模型进行再训练。
Mercado de Frente架构的核心是Amazon Bedrock,这是一项旨在简化生成式人工智能应用程序开发和扩展的服务。Bedrock提供了一系列精心策划的领先基础模型,每一个都针对特定的使用场景进行了优化,使开发人员能够选择最佳解决方案来满足自身需求。
但Bedrock的真正力量在于其促进模型定制化的能力。通过微调、RAG和知识库等功能,Mercado de Frente可以将丰富的客户数据融入其生成式人工智能解决方案中,确保个性化和与上下文相关的体验。
Bianca对架构的深入探讨揭示了一系列亚马逊云科技服务的交响乐般的配合,每一项都在编排Teddy功能的过程中扮演着关键角色。从驱动后端系统的Amazon EKS,到促进向量数据库存储和检索的OpenSearch,这些组件相互协作,为用户带来无缝体验。
这一旅程始于客户的消息,无论是文本、音频还是图像,都会由后端系统进行分析,以确定其意图。这种意图识别由Anthropic的Claude模型提供支持,并通过Amazon Bedrock进行利用。根据识别出的意图,架构会动态调整,调用不同的模型和服务来满足客户的请求。
对于菜谱生成,亚马逊的Titan模型将会启动,不仅生成菜谱说明,还会生成最终菜肴的精美图像。这些资产随后将被嵌入OpenSearch上的向量数据库,并存储在S3存储桶中,确保后续请求时能够高效检索和重用。
但是Teddy的功能远不止生成食谱。对于常见问题,该架构利用了Bedrock的知识库功能,从Mercado de Frente的向量数据库中丰富了模型的响应内容。这种无缝集成确保了客户无论是询问特定食物、Teddy的功能还是Mercado de Frente的产品,都能收到准确和相关的信息。
此外,Teddy与Mercado de Frente的电子商务平台的集成,允许客户直接通过对话界面更新个人资料、偏好和饮食限制。利用Bedrock的代理,该架构可以调用后端API,简化了流程,客户无需浏览复杂的网站。
Bianca的演讲证明了亚马逊云科技生成式人工智能产品的灵活性和可扩展性。通过结合正确的工具、模型和定制策略,Mercado de Frente打造了一个不仅解决了紧迫的可持续性挑战,而且将客户体验提升到了新的高度的解决方案。
随着演讲接近尾声,Bianca分享了组织机构开始自己的生成式人工智能之旅时应该考虑的关键因素。确定高影响力的机会(无论是内部还是外部)至关重要——解决与客户和组织目标产生共鸣的现实世界问题。
从一个重点用例开始,而不是试图解决所有问题,是一种明智的做法,可以根据客户反馈进行迭代改进和持续完善。负责任的人工智能实践,包括数据隐私、安全性和道德考虑,是成功的生成式人工智能解决方案必须建立的不可协商的支柱。
Mercado de Frente和Teddy的历程证明了生成式人工智能在可持续发展领域的变革力量。通过利用最新技术、利用客户数据并采用以客户为中心的方法,他们不仅解决了一个紧迫的问题,而且为更加可持续的未来铺平了道路。
随着亚马逊云科技 re:Invent 2024落下帷幕,与会者怀着重新燃起的目标和可能性离开了会场。生成式人工智能不再是遥不可及的梦想,而是一个有形的现实,有望重塑行业并推动有意义的变革。而在可持续发展领域,每一分努力都很重要,这场革命才刚刚开始。
下面是一些演讲现场的精彩瞬间:
演讲者们探讨了如何将生成式人工智能整合到可持续发展战略和产品中,以帮助客户实现其环境目标。
亚马逊正在创建蓝图和最佳实践,帮助客户将新兴技术(如生成式人工智能)整合到其可持续发展战略中,实现可持续发展目标。
亚马逊目睹了生成式人工智能在各行业的广泛创新,从代码生成到增强客户体验,再到简化业务运营。
演讲者强调了巴西惊人的食物浪费问题,由于供应链效率低下和对尺寸和形状的武断标准,30%的食物直接被浪费,剥夺了许多人获得优质有机食品的机会。
Mercado deFerente利用机器学习算法根据客户的偏好、限制和烹饪目标策划个性化食品盒,提供更优惠的价格和订阅模式。
演讲者强调了拉丁美洲家庭在餐饮计划和食物浪费方面面临的挑战,78%的人难以决定做什么菜,15-20%的食品最终被浪费。
演讲者总结了与Mercadi Deferration和其他客户合作时学到的关键经验,鼓励观众利用技术和数据创造自己的解决方案。
总结
将生成式人工智能融入可持续发展战略,为推动有意义的进步提供了创新机会。本文探讨了各行业公司如何利用先进的人工智能技术来应对复杂的可持续发展挑战。
首先,生成式人工智能使组织能够简化流程、提高生产力并提供卓越的客户体验。从优化产品设计以实现可持续性,到对海量数据存储库进行语境化,人工智能正在彻底改变企业的运营方式。此外,它还使公司能够驾驭复杂的ESG合规和报告领域,为满足不断发展的监管要求提供智能解决方案。
其次,本文探讨了生成式人工智能在应对全球当前紧迫问题——食品浪费方面的变革潜力。巴西初创公司Mercado de Frente开发了一个名为Teddy的人工智能驱动平台,利用对话式人工智能和个性化功能帮助客户规划膳食、推荐食谱并减少食品浪费。通过了解个人偏好和饮食限制,Teddy可以量身定制解决方案,培养更加可持续和谨慎的杂货购物和膳食规划方式。
最后,本文强调了建立健全的数据基础和有效的技术集成对于成功应用生成式人工智能的重要性。它强调了全面的数据平台、治理框架和与现有系统的无缝集成的必要性。通过利用数据的力量并采用合适的工具,公司可以释放生成式人工智能的全部潜力,推动可持续发展计划并产生持久影响。
总之,本文展示了生成式人工智能在可持续发展战略中的变革作用,为复杂挑战提供创新解决方案,同时赋予组织以数据驱动的决策能力,与其可持续发展目标和目标保持一致。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。