生成式人工智能的投资回报率是多少?数据能说明问题吗?

生成式人工智能的投资回报率是多少?数据能说明问题吗?

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Cloud0, Generative Ai Investment, Long-Term Gains, Iterative Implementation, Data Readiness, Pre-Trained Models Customization, Stakeholder Alignment, Governance, Brand Protection, Roi Metrics, Existing Goals]

导读

数字企业在2023年开始生产性使用生成式AI,并在2024年加速发展。高级应用可以平均带来11%的收益增长。专注于改进特定业务功能在各种用例中显示出最一致的投资回报率。在人力资源、供应链管理、IT自动化、代码开发等方面的具体数据是什么?企业如何深入分析单位经济效益?哪些ROI模型对AI项目最有效?本次讨论将探讨最新的分析师报告,结合实际客户案例,揭示特定ROI效率的真实数据和指标。

演讲精华

以下是小编为您整理的本次演讲的精华。

在2024年AWSre:Invent大会上,一场题为“生成式人工智能的投资回报率是多少?数字能否讲述这个故事?”的小组讨论引发了深入思考。由亚马逊云科技负责协助客户进行IPO、融资和并购战略的Tony Saketa主持,该讨论会深入探讨衡量生成式人工智能技术投资回报率(ROI)的复杂性。

Tony Saketa首先承认,人们对生成式人工智能的投资回报率的理解取得了长足进步。尽管去年仍存在模糊性,但亚马逊最近利用Amazon Q报告了内部指标,提供了有形的数据点,为这一话题带来了启示。此外,思想领袖、研究人员和咨询机构进行的大量研究工作也为生成式人工智能的投资回报率提供了坚实的证据。然而,Saketa强调,绝大多数组织仍在努力实现和衡量这一领域的投资回报率,因此需要借助小组成员的宝贵见解。

小组由来自OfferUp、AlphaSense、Cloud0和AI21 Labs的杰出高管组成,他们分享了各自公司在利用生成式人工智能方面的独特经验和见解。OfferUp是一个本地买卖平台,其工程副总裁Alex Naginski分享了在生成式人工智能的初始投资与长期收益之间寻求平衡的见解。他主张采取审慎的方式,从最小可行产品(MVP)开始,同时预见长期影响。Naginski强调重新构想产品和功能的重要性,而不是将生成式人工智能作为一种附加功能。他建议采取迭代策略,将实施分解为可管理的切片,从而促进持续学习、最佳实践采用和关键绩效指标(KPI)的发展。

AI21 Labs是一家专注于将生成式人工智能技术带给企业的研究实验室,其北美高级副总裁兼总经理Pankaj Gujar提供了补充性观点。Gujar强调评估风险暴露、数据准备情况以及避免过于雄心勃勃的初始尝试的重要性。他建议确定能够加快上线时间的快速赢利用例,警告不要过早尝试解决复杂的多步骤工作流程。Gujar的见解强调了建立内部技术能力和培养持续改进文化的重要性。

AlphaSense是一个基于人工智能的市场情报搜索引擎,其产品副总裁Chris Ackerson强调了战略投资分配的关键性。他建议将资源集中在与业务差异化和独特工作流程密切相关的领域,同时审慎地利用供应商解决方案来满足更加商品化的需求。Ackerson的建议强调了保持平衡方法的重要性,认识到生成式人工智能解决方案的快速发展以及外部合作伙伴关系有可能增强内部努力的潜力。

讨论随后转向了是构建定制模型还是利用预训练模型的关键决策,以及其对投资回报率的影响。Pankaj Gujar承认许多客户最初倾向于追求定制模型,但警告不要过于固步自封。他指出模型质量、长上下文窗口、检索能力和增强生成等方面的显著进步,已经减少了许多用例中定制化的必要性。Gujar主张采取更加开放的态度,建议随着时间的推移,维护定制模型的总体拥有成本可能会使利用预训练模型加上提示工程技术成为更明智的选择。

Chris Ackerson通过分享AlphaSense的经历来证实了这一观点。最初,该公司对模型进行了微调,以实现总结财报电话会议等任务所需的准确性。然而,他们很快发现预训练模型迅速赶上了进度,使得对许多用例进行微调变得不再必要。Ackerson建议从预训练模型开始,通过提示工程等技术进行定制,并在大规模应用时考虑微调,届时成本和延迟优势可能会变得更加明显。

Cloud0的首席技术官兼创始人Eric Peterson也赞同了这种观点,即定制模型训练是“非常繁重的工作”,大多数公司都无法为之做好准备,因为技术变革的步伐太快。他主张通过提示工程等方法定制预训练模型,并利用亚马逊Bedrock等工具整合专有数据。

小组随后将注意力转向了组织利益相关方以保持对投资回报率的关注,同时确保遵守人工智能治理和品牌保护协议的复杂挑战。Chris Ackerson强调量化效率提升并收集用户的证词证据,以证实投资回报率主张的重要性。他强调,要持续投资和维护生成式人工智能产品,警告不要误以为实现生产就绪是最终目标。

Pankaj Gujar强调了透明度、将经济效益与明确的业务成果联系起来,以及向利益相关方解释技术细节的三重要素。他主张设定现实的期望,降低利益相关方对生成式人工智能能力抱有不切实际假设的风险。此外,Gujar还强调了建立投资与产生的有形业务价值之间的直接关联的重要性,从而促进更加明智的投资回报率对话。

Alex Naginski主张成立一个跨职能委员会,由法律、营销、销售、产品和工程部门的代表组成。这种协作方式将确保考虑所有观点和关切,从而全面了解追求特定生成式人工智能计划所带来的价值、风险和机会成本。

在确定衡量投资回报率的具体指标时,小组成员一致认为应与现有的业务目标和指标保持一致。Alex Naginski强调,生成式人工智能应被视为支持和增强现有指标的工具,而不是需要发明全新的指标。他举例说明了工程领域的用户故事周期时间、团队速度和缺陷率等既定指标,强调了这些指标在衡量生成式人工智能对内部流程的影响方面的适用性。

观众提问环节进一步探讨了安全数据处理实践、无缝人工智能劳动力整合策略以及克服机构在采用生成式人工智能技术方面的惰性等问题。小组成员分享了他们的经验和见解,以实际考虑和真实案例丰富了讨论。

在结束语中,Tony Saketa强调了2024年AWSre:Invent大会上关于生成式人工智能投资回报率的其他会议和资源。他感谢观众的出席和参与,并强调此类对话在推进对这一变革性技术的理解和采用方面的重要性。

AWSre:Invent2024大会上的小组讨论见证了生成式人工智能领域的快速发展,以及建立稳健框架来衡量和优化投资回报率的必要性。通过汇聚行业领袖和主题专家,该会议促进了丰富的思想、策略和最佳实践交流,为与会者提供了宝贵的见解,以应对这一新兴领域的复杂性。

下面是一些演讲现场的精彩瞬间:

演讲者欢迎大家参加关于生成式人工智能(Generative AI)投资回报率(ROI)及其对数字化企业(DNBs)的影响的小组讨论。

e73f71748e6c9b690d0651edf7785c72.png

强调在尝试复杂的生成式人工智能项目之前,从小做起,取得早期胜利的重要性。

27a5c0a15ead45e7c67ad20e9b8b504d.png

一家公司利用预训练语言模型并针对特定用例进行微调的观点,强调了生成式人工智能能力的快速进步。

7fece7b0a668670130c9e4b2e279b854.png

强调捕捉实证证据并建立共识的重要性,以证明生成式人工智能产品的投资回报率,并随着时间的推移持续投资。

b3ffaa229498b8a99fa98738a6028af9.png

Andy Jassy强调了利益相关者的一致性以及在公司内部采用新技术时从内部用例开始以降低风险的重要性。

c017020ae7b78634395cdc11dcab327d.png

演讲者强调了解与业务运营相关的成本和收益的重要性,以证明投资的合理性,并为利益相关者对计划的价值和目标的讨论做好准备。

bc8357b6629940a5c581676386c2f7b7.png

与会者的问答环节已从记录中省略。

d4447844ba23f45e565868ce41960e9d.png

总结

生成式人工智能时代的黎明已经拉开了技术创新的新序幕,但对于许多组织来说,量化其投资回报率(ROI)仍然是一个挑战。在这场富有洞见力的小组讨论中,行业领导者分享了他们在衡量和最大化生成式人工智能投资回报率方面的观点。

在初始投资和长期收益之间取得适当平衡至关重要。专家建议从最小可行产品(MVP)开始,逐步迭代,并在此过程中教育利益相关者。选择构建定制模型还是利用预训练模型是一个影响ROI的战略决策。虽然定制模型提供了量身定制的解决方案,但预训练模型在早期阶段提供了更快的上市时间和更高的成本效益。

在治理、品牌保护和ROI目标之间达成利益相关者的一致非常重要。透明度、明确的业务成果以及对实施经济学的理解是关键。利益相关者教育和跨职能协作有助于实现一致性并降低风险。确定具体的ROI指标应与现有的业务目标和关键绩效指标保持一致,同时允许针对独特的使用案例量身定制新的指标。

总的来说,实现生成式人工智能的可衡量ROI需要采取战略性方法、迭代学习,并深入理解业务目标。通过遵循这些原则,组织可以释放生成式人工智能的变革潜力,同时最大化投资回报率。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值