通过端到端数据策略提升您的客户体验
关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Amazon Personalize, Customer Experience, End-To-End Data Strategy, Data Sources Integration, Advanced Analytics Applications, Data Governance Compliance]
导读
获得全面理解如何实施端到端数据战略以推动以客户为中心的创新。学习实用的策略和技巧,以收集、分析和利用数据驱动的洞察,直接影响客户旅程。主要收获包括:理解端到端数据战略的基本要素,发掘客户洞察并采取行动,学习优化运营并提供个性化体验,获得提升客户体验的实用工具和技巧,以及具备在组织内推动以客户为中心的创新能力。
演讲精华
以下是小编为您整理的本次演讲的精华。
在亚马逊云科技 re:Invent 2024活动上,Jenny和Cheryl进行了一场题为“通过端到端数据策略提升客户体验”的富有洞见的演讲。本次会议旨在让与会者了解端到端数据策略在提升客户体验方面的关键作用,并全面理解如何有效地构建这种策略。
Jenny首先承认,客户普遍希望为客户提供卓越的体验。然而,她认识到客户信息分散在各种来源中,这给组织带来了挑战,使其不确定从何入手。一位客户向Jenny诉说了他们的困境:“嘿,Jenny,我的数据到处都是。我在本地数据库中有数据,也有PDF文件。我甚至想收集YouTube评论。我该怎么做呢?”这一困境正是本次会议的出发点,会议承诺阐明如何通过实施端到端数据策略来提升客户体验。
Jenny强调了数据质量的重要性,并表示端到端数据策略是集成数据源、实现高级分析、机器学习、人工智能或生成式人工智能应用程序的黄金钥匙。她警告说,如果向生成式人工智能应用程序(如聊天机器人)输入不准确的数据,必然会产生错误的响应,这在为客户服务时必须避免。相反,一个精心制定的数据策略可以快速洞察大量数据,从而支持明智的决策过程。
为了说明客户数据的复杂性,Jenny采用了乐高积木的比喻,将分散的客户信息比作不同形状和颜色的积木。她强调数据团队需要精心构建和组织这些零散的元素,以获得与业务目标和价值观相一致的有意义的见解。实施数据策略的关键目标包括做出更好、更快的决策以跟上市场趋势,提高客户体验和忠诚度,在行业内保持竞争优势,创建生成式人工智能应用程序,以及降低数据运营成本。
Jenny承认组织面临着多方面的挑战,如客户数据量快速增长、跨团队和外部来源的数据格式多样、缺乏机器学习和生成式人工智能应用程序的技术技能,以及遵守PII、PCI和HIPAA等法规的必要性。她举了一个客户的例子,该组织在数据库中有1亿行客户信息,总计10TB,而且数据量每月、每季度和每年都在不断增加。
接下来,Cheryl阐述了现代数据策略如何有效应对这些挑战。根据亚马逊云科技的说法,数据策略是一个涵盖思维模式、人员、流程和技术的协调行动计划。它加速了利用数据创造价值的过程,同时直接支持业务目标。Cheryl强调,尽管技术是必不可少的,但它并不是现代数据策略的核心。成功的三个关键因素是技术、人员和流程,以及思维模式。
Cheryl解释说,技术是指所使用的工具和服务,而人员和流程则包括技能组合、团队、部门以及他们处理数据的方式。思维模式则涵盖了培养数据驱动文化所需的信念、价值观和行为。Cheryl强调,这三个因素对于成功的数据策略同等重要,并举例说明,如果一个组织拥有必要的技术但缺乏所需的技能或思维模式,那么数据策略就会失效。
Cheryl介绍了亚马逊云科技提供的数据策略诊断工作坊,这是一种免费资源,可供有兴趣评估和完善数据策略的组织使用。
Cheryl解释说,构建现代数据架构首先要进行数据发现,这个过程包括定义业务价值、识别用户角色及其数据使用模式、确定数据源、确定适当的数据存储(关系数据库或数据湖)以及了解处理数据的应用程序或用例。
Cheryl随后概述了现代数据架构的高级概览,它由多个层次组成。数据源(包括流式数据、批量数据、结构化或非结构化数据)开启了这个过程。借助亚马逊云科技数据迁移服务等工具,摄取层发挥着从本地无缝迁移数据到亚马逊云科技存储的关键作用。例如,Cheryl指出,如果一个组织希望将其数据库从本地无缝迁移到亚马逊云科技,那么亚马逊云科技数据迁移服务将是理想的摄取服务。
存储层由Amazon简单存储服务支持,可以从全球任何地方存储和检索任何数量的数据。在这一层中,数据被组织到着陆区、原始区和精选或消费区,准备好用于各种应用程序或用例。
数据目录确保对存储的数据进行全面记录,使用户能够理解其表示形式。处理层包括数据清理和丰富,通过数据探索、分析和数据仓库服务(如Amazon QuickSight、Amazon Athena和Amazon Redshift)为数据消费做好准备。Cheryl指出,如果一个组织想进行大规模数据分析和可视化,Amazon QuickSight将是一个合适的服务。对于临时查询数据集和数据探索,Amazon Athena可能是一个合适的选择。此外,对于数据仓库需求,Amazon Redshift是一个推荐的解决方案。
Cheryl强调了分段层的重要性,它可以统一客户数据并通过个性化提升客户体验。她举了Amazon Personalize的例子,这是一种机器学习工具,可以提供内容推荐和个性化,从而增强Amazon.com和Amazon Prime Video等平台的用户体验。Cheryl解释说,当客户使用Amazon.com或Amazon Prime Video时,他们会根据自己的浏览或观看历史收到电影或产品推荐,这是由Amazon Personalize提供支持的。
Cheryl强调了亚马逊云科技通过加密和遵守监管要求来保护数据安全的重要性,为组织提供了一个安全的环境。
最后,Jenny和Cheryl鼓励与会者扫描提供的二维码或联系亚马逊云科技,开始与亚马逊云科技合作构建现代数据策略的旅程,并利用数据策略诊断服务。
下面是一些演讲现场的精彩瞬间:
Jenny和Cheryl介绍了他们关于创建端到端数据策略的演讲主题。
强调利用数据洞见、提供卓越的客户体验、保持领先于竞争对手以及拥抱生成式人工智能应用程序以做好未来准备的重要性。
演讲者强调了数据共享、可发现性以及为机器学习和生成式人工智能应用程序准备数据的挑战,并强调了技术技能和长期维护策略的需求。
演讲者强调,现代数据策略不仅仅是技术和工具,还包括跨不同团队和部门的人员、流程和技能。
解释了数据架构的高级概览,包括数据源、使用诸如亚马逊云科技数据迁移服务等服务的摄取层和存储。
演讲者邀请观众扫描二维码或联系亚马逊云科技以获取有关构建现代数据策略和利用数据策略诊断工具的更多信息。
亚马逊云科技优先考虑安全性,并提供强大的数据保护、加密和合规性工具,以确保云环境的安全。
总结
释放数据力量:全面战略提升客户体验
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。