ComfyUI - 入门


观看教程

ytb 视频:https://youtu.be/AbB33AxrcZo


快速开始Quick Start

  1. 下载一个 checkpoint 文件。可能是 Stable Diffusion v1.5。将文件放在 ComfyUI/models/checkpoints 之下。
  2. 刷新 ComfyUI。
  3. 点击 Load Default 按钮 使用默认工作流程。
  4. Load Checkpoint 节点中,选择你刚刚下载的检查点文件。
  5. 点击 Queue Prompt 并观看你的图像生成。通过调整提示来生成不同的图像。

概述


什么是自定义节点?

Comfy 的一个强大之处在于其基于节点的架构允许你通过以不同的方式连接提供的节点来开发新的工作流程。内置的节点提供了一系列的功能,但你可能会发现你需要一个核心节点没有提供的功能。
自定义节点允许你实现新功能,并与更广泛的社区分享。

自定义节点,就像任何 Comfy 节点一样,本质上接收输入,对其进行一些操作,然后产生输出。虽然一些自定义节点执行高度复杂的任务,但许多只是做一件事情。这里有一个简单节点的例子,它接收一个图像并将其反转。


客户端-服务器模型

Comfy采用客户端-服务器模型运行。服务器由Python编写,处理所有实际工作:数据处理、模型、图像扩散等。客户端由JavaScript编写,处理用户界面。

Comfy还可以以API模式使用,此时非Comfy客户端(例如另一个UI或命令行脚本)将工作流程发送到服务器。

自定义节点可以放入四个类别之一:


仅服务器端

大多数自定义节点仅运行在服务器端,通过定义一个Python类来指定输入和输出类型,并提供一个可以被调用来处理输入并生成输出的函数。


仅客户端

一些自定义节点提供对客户端UI的修改,但不会添加核心功能。尽管名称如此,
它们甚至可能不会向系统中添加新节点。


独立客户端和服务器

自定义节点可能提供额外的服务器功能以及额外的(相关)UI功能(例如处理新数据类型的新小部件)。在大多数情况下,客户端和服务器之间的通信可以通过Comfy数据流控制来处理。


连接客户端和服务器

在少数情况下,UI功能和服务需要直接相互交互。

任何需要客户端-服务器通信的节点都将无法通过使用API兼容。


### ComfyUI 和 FreeVC 的资源与教程 #### 关于 ComfyUI ComfyUI 是一种基于节点编辑器设计的人工智能图像生成工具,它允许用户通过拖放操作构建复杂的 AI 图像处理流程。其灵活性和易用性使其成为许多设计师和技术爱好者的首选工具之一。 对于初学者来说,可以参考官方文档以及社区分享的内容来学习如何使用该软件[^1]。以下是几个推荐的学习路径: - **官方 GitHub 页面**: 提供了详细的安装指南、基础概念介绍以及一些常见问题解答。 - **YouTube 教程视频**: 许多创作者会发布关于 ComfyUI入门教学视频,这些视频通常直观且易于理解。 - **Discord 社区交流群组**: 加入 Discord 可以让你与其他使用者互动并获取实时帮助和支持。 ```bash git clone https://github.com/comfyanonymous/ComfyUI.git cd ComfyUI pip install -r requirements.txt ``` 以上命令可以帮助您快速搭建本地开发环境[^2]。 #### 关于 FreeVC FreeVC 则是一个开源项目,专注于语音转换技术的研究与发展。该项目利用先进的深度学习模型实现了高质量的声音变换效果,在保持音质的同时还能调整说话人的特性参数如性别、年龄等特征[^3]。 如果想深入了解或者实践这个领域的话,则可以从以下几个方面入手: - 阅读论文了解背后的理论支撑及其创新之处; - 浏览代码库熟悉具体实现细节并通过实验验证功能; - 查找已有的案例分析报告从而积累经验教训以便优化自己的解决方案。 同样地,这里也给出了一套标准的操作步骤用于部署测试版本: ```python import torch from freevc.inference import infer_tool, slicer from freevc.models import SynthesizerTrn device = 'cuda' if torch.cuda.is_available() else 'cpu' model_path = "./pretrained/freevc.pth" config_path = "./configs/config.json" infer_tool.load_model(model_path=model_path, config_path=config_path) audio_file = './example.wav' output_dir = './results/' slicer.slice(audio_file=audio_file, output_directory=output_dir) ``` 上述脚本展示了加载预训练权重文件并将输入音频片段分割成更小部分的过程[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值