一、功能与作用
模型加载
- 核心功能:从本地指定路径加载
.ckpt
或.safetensors
格式的模型文件,支持 SD1.5、SDXL 等主流扩散模型。
输出内容
- MODEL:UNet 模型,负责潜在空间图像的扩散预测(去噪过程)。
- CLIP:文本编码器,将提示词转换为语义向量,用于引导图像生成方向。
- VAE:变分自动编码器,负责将潜在空间图像解码为像素图像。
扩展功能
- 配置文件支持:通过 Load Checkpoint with config 节点加载自定义配置文件(位于 models/configs),可适配特定模型的参数设置。
- 多模型切换:在节点下拉菜单中切换不同模型,直接改变生成图像的风格和质量。
二、参数与操作
主要参数
- ckpt_name:选择已安装的大模型文件(需提前放入 models/checkpoints 目录)。
- config_name(可选):指定模型配置文件(如未配置,默认使用内置参数)。
输出连接
- MODEL → 连接至采样器(如 KSampler)的 model 输入端口,控制去噪逻辑。
- CLIP → 连接至文本编码器(CLIP Text Encode),用于处理提示词。
- VAE → 连接至解码器(VAE Decode),将潜在图像转换为可视结果。
三、配置与使用
模型存放路径
- 默认路径:将模型文件(
.ckpt
或.safetensors
)放置于 ComfyUI/models/checkpoints 目录。 - 共享模型:通过修改
extra_model_paths.yaml
文件,可与其他工具(如 WebUI)共用同一模型库。
操作示例
- 加载模型后,通过
ckpt_name
下拉菜单选择目标模型,点击生成按钮(如Queue Prompt
)即可启动流程。 - 不同模型生成效果差异显著,例如:写实模型(如 RealisticVision)生成高细节图像;动漫模型(如 Anything V5)输出二次元风格。
四、注意事项
模型兼容性
- SD1.5 与 SDXL 模型需对应不同的工作流设计,混合使用可能导致崩溃。
- 部分模型需搭配特定 VAE 文件(如
vae-ft-mse-840000-ema-pruned.ckpt
)以优化解码效果。
性能要求
- 大模型(如 SDXL)对显存需求较高,建议至少 8GB VRAM 的 GPU 设备。
- 模型体积越大,生成耗时越长(如 7GB 模型生成时间约为 2GB 模型的 3 倍)。
通过合理配置 Load Checkpoint 节点,用户可快速切换模型风格,实现从基础文生图到精细化控制的全流程操作。