引言
在这个信息爆炸的时代,语音技术已经成为我们日常生活中不可或缺的一部分。从语音助手到实时翻译,语音技术的应用场景无处不在。然而,如何在复杂的业务场景中实现精准的文本转语音(TTS)和语音转文本(ASR)呢?今天,我们将深入探讨如何利用阿里百炼的语音合成和识别技术,打造属于你自己的专属语音模型。🌟
实例分析:现实中的语音转文本需求
在实际业务中,我们常常需要分析用户的语音记录,以识别他们的意图。例如,用户对产品的评价或购买意愿等信息,都是通过语音转文本来获取的。然而,如何确保模型能够准确识别特定的品牌或术语呢?这正是我们需要解决的问题。
2.1 文本转语音
我们首先使用阿里的CosyVoice合成语音,模拟一个真实的业务场景。假设我们上线了一款名为“咸货”的新应用,用户可以在上面发布和购买闲置物品。由于“咸货”这个名字的特殊性,模型可能无法准确识别,这就需要我们进行优化。
import dashscope
from dashscope.audio.tts_v2 import *
# 设置阿里百炼API密钥
dashscope.api_key = 'sk-xxx'
model = "cosyvoice-v1"
voice = "loongbella"
synthesizer = SpeechSynthesizer(model=model, voice=voice)
audio = synthesizer.call("老板,最近我们上线了一个新应用,叫咸货,您可以在上面发布您的闲置物品,也可以购买别人发布的闲置物品,非常方便。")
print('requestId: ', synthesizer.get_last_request_id())
with open('output.mp3', 'wb') as f:
f.write(audio)
通过上述代码,我们成功将文本转化为语音,并准备好进行下一步的语音转文本分析。
2.2 语音转文字
接下来,我们使用阿里的paraformer模型进行语音转文本操作。由于模型可能无法识别“咸货”这一特定词汇,我们需要引入热词库来提高识别准确率。
from http import HTTPStatus
import json
import dashscope
from dashscope.audio