【人工智能】AI语音技术:如何用阿里百炼实现精准文本转语音与语音转文本?

引言

在这个信息爆炸的时代,语音技术已经成为我们日常生活中不可或缺的一部分。从语音助手到实时翻译,语音技术的应用场景无处不在。然而,如何在复杂的业务场景中实现精准的文本转语音(TTS)和语音转文本(ASR)呢?今天,我们将深入探讨如何利用阿里百炼的语音合成和识别技术,打造属于你自己的专属语音模型。🌟

在这里插入图片描述

实例分析:现实中的语音转文本需求

在实际业务中,我们常常需要分析用户的语音记录,以识别他们的意图。例如,用户对产品的评价或购买意愿等信息,都是通过语音转文本来获取的。然而,如何确保模型能够准确识别特定的品牌或术语呢?这正是我们需要解决的问题。

2.1 文本转语音

我们首先使用阿里的CosyVoice合成语音,模拟一个真实的业务场景。假设我们上线了一款名为“咸货”的新应用,用户可以在上面发布和购买闲置物品。由于“咸货”这个名字的特殊性,模型可能无法准确识别,这就需要我们进行优化。

import dashscope
from dashscope.audio.tts_v2 import *

# 设置阿里百炼API密钥
dashscope.api_key = 'sk-xxx'

model = "cosyvoice-v1"
voice = "loongbella"

synthesizer = SpeechSynthesizer(model=model, voice=voice)

audio = synthesizer.call("老板,最近我们上线了一个新应用,叫咸货,您可以在上面发布您的闲置物品,也可以购买别人发布的闲置物品,非常方便。")
print('requestId: ', synthesizer.get_last_request_id())
with open('output.mp3', 'wb') as f:
    f.write(audio)

通过上述代码,我们成功将文本转化为语音,并准备好进行下一步的语音转文本分析。

2.2 语音转文字

接下来,我们使用阿里的paraformer模型进行语音转文本操作。由于模型可能无法识别“咸货”这一特定词汇,我们需要引入热词库来提高识别准确率。

from http import HTTPStatus
import json
import dashscope
from dashscope.audio
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值