【OpenAI】一文教你如何获取OpenAI API

1、通过国内的“CodeMoss”获取OpenAI API

由于部分海外服务访问限制,针对国内用户可以通过国内平台“CodeMoss”获取OpenAI API。

2、访问CodeMoss工具

打开CodeMoss进入主页https://pc.aihao123.cn/index.html#/page/login?invite=1141439&fromChannel=MossKey

3、进入API管理界面

导航至API管理页面。
在这里插入图片描述
在这里插入图片描述

4、生成新的API

  1. 点击“添加”按钮。
  2. 创建成功后,点击“查看KEY”按钮,获取你的Key。

在这里插入图片描述


使用OpenAI API的实战教程

拥有了API和Key后,接下来就是如何在你的项目中调用OpenAI API了。以下以Python为例,详细展示如何进行调用。

1.可以调用的模型
gpt-3.5-turbo
gpt-3.5-turbo-1106
gpt-3.5-turbo-0125
gpt-3.5-16K
gpt-4
gpt-4-32K
gpt-4o-2024-05-13
gpt-4o-mini
claude-2
claude-3-opus-20240229
claude-3-sonnet-20240229
deepseek-chat
ERNIE-Bot
ERNIE-Bot-4
chatglm_pro
SparkDesk
moonshot-v1-8k
2.Python示例代码(基础)

基本使用:直接调用,没有设置系统提示词的代码

  • 流逝返回

from openai import OpenAI
client = OpenAI(
    api_key="这里是CodeMoss的api_key",
    base_url="https://api.aihao123.cn/luomacode-api/open-api/v1"
)

response = client.chat.completions.create(
    messages=[
            # 把用户提示词传进来content
        {'role': 'user', 'content': "鲁迅为什么打周树人?"},
    ],
    model='gpt-4',  # 上面写了可以调用的模型
    stream=True  # 一定要设置True
)

for chunk in response:
    print(chunk.choices[0].delta.content, end="", flush=True)
  • 非流逝返回
from openai import OpenAI
client = OpenAI(
    api_key="这里是获取的api_key",
    base_url="https://api.aihao123.cn/luomacode-api/open-api/v1"
)

response = client.chat.completions.create(
    messages=[
            # 把用户提示词传进来content
        {'role': 'user', 'content': "1+1等于几?帮我说列出详细步骤。"},
    ],
    model='gpt-3.5-turbo',  # 调用的模型
    stream=False  # True 是流逝返回,False是非流逝返回
)

print(response.choices[0].message.content)
3.Python示例代码(高阶)

进阶代码:根据用户反馈的问题,用GPT进行问题分类

from openai import OpenAI

# 创建OpenAI客户端
client = OpenAI(
    api_key="your_api_key",  # 你自己创建创建的Key
    base_url="your_base_url"  # 你的base_url
)

def api(content):
    print()
    
    # 这里是系统提示词
    sysContent = f"请对下面的内容进行分类,并且描述出对应分类的理由。你只需要根据用户的内容输出下面几种类型:bug类型,用户体验问题,用户吐槽." \
                 f"输出格式:[类型]-[问题:{content}]-[分析的理由]"
    response = client.chat.completions.create(
        messages=[
            # 把系统提示词传进来sysContent
            {'role': 'system', 'content': sysContent},
            # 把用户提示词传进来content
            {'role': 'user', 'content': content},
        ],
        # 这是模型
        model='gpt-4',  # 上面写了可以调用的模型
        stream=True
    )

    for chunk in response:
        print(chunk.choices[0].delta.content, end="", flush=True)


if __name__ == '__main__':
    content = "这个页面不太好看"
    api(content)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值