目录
1.计算基础
→正数负数原码补码
2.数据结构
2.1 树
2.1.1 在计算机文件系统中
文件和文件夹以树状结构组织。
文件夹是节点,文件可以是叶子节点或者包含在文件夹节点中。
方便进行文件和文件夹的浏览、添加、删除和移动操作。
2.1.2 在数据库索引中
像B树(B - Tree)和B+树(B+ - Tree)被广泛使用。B树可以减少磁盘I/O操作,能够高效地进行数据的查找、插入和删除。B+树主要用于数据库和操作系统的文件系统中,它的叶子节点形成一个有序链表,更适合范围查询。
2.1.3在编译器设计的语法树方面
编译器会将程序代码构建成语法树。
树的节点代表语法结构,比如操作符、操作数等。
通过遍历语法树,编译器可以进行语义分析、代码生成等操作。
2.1.4在决策树算法中
应用于机器学习和数据挖掘领域。
例如,在医疗诊断中,根据症状、检查结果等因素构建决策树,用于判断疾病类型;或者在金融风险评估中,依据用户的各种财务数据和行为特征构建决策树,评估信贷风险。
2.2 队列
1️⃣特点
❶顺序性
元素按入队先后排列,有明确的顺序。
❷操作受限
入队只能在队尾添加元素,出队只能从队首移除元素。
2️⃣ ❸先进先出
先入队的元素先出队,像排队办事一样。
栈(先进后出,后进先出)
3️⃣应用场景
3.1 在计算机系统的任务调度方面
例如操作系统会将进程放入队列中。
当CPU资源可用时,按照先来先服务的原则,从队列头部取出进程运行,新的进程则在队尾排队等待,确保任务有序执行。
3.2 在网络数据传输里
像网络打印机的打印任务排队。当多个用户同时发送打印请求时,这些请求会以队列的形式存储,打印机按照接收顺序依次处理,保证打印任务有条不紊地完成。
3.3 在广度优先搜索算法(BFS)
例如在图形数据结构里寻找最短路径。从起始节点开始,将相邻节点依次放入队列,按照队列顺序进行搜索,这样可以一层一层地向外扩展搜索范围,找到从起始节点到目标节点的最短路径。
2.3 图
(eg.百度地图导航)
2.3.1 在游戏地图设计中
图可以用来表示地图的布局。顶点可以是游戏场景中的关键位置,如城镇、关卡入口等,边表示这些位置之间的通道。
2.3.2 对于物流运输
图可以用来优化配送路线。例如,物流公司要将货物从仓库送到多个商店,通过构建图并找到最优路径,可以节省运输时间和成本。
2.3.3 当出现网络故障时
通过图的结构和相关算法可以快速定位故障点,比如从一个设备无法访问另一个设备,通过分析图中的路径可以找到是哪条连接(边)或者哪个中间设备(顶点)出了问题。
2.4 堆栈
先进后出
3.算法
→如何用流程图描述算法
例题:n个数找最大值
4.软件开发
①生命周期(开发软件所需步骤)
②计算软件开发的成本
各成本相加(还要有项目风险成本)
5.数据库基础
①数据库的特点
(主流的数据库至少要知道三个及其特点)
Oracle
性能卓越,能处理复杂业务逻辑与大规模并发访问,适用于对性能和可靠性要求高的关键业务系统。功能全面,安全性高,可扩展性出色,但成本高昂。
MySQL
开源且社区支持广泛,成本效益高,安装配置简单易上手,性能和扩展性良好,适合中小型项目和 Web 应用。不过在处理复杂查询和大规模数据写操作时性能稍差,事务处理能力相对较弱.
HBase
大数据环境下的分布式列存数据库,基于 Hadoop 生态系统,能处理海量结构化和半结构化数据,适用于大数据分析、数据仓库等场景 。
②数据库的设计的步骤
③开发软件所需要的成本
④项目延期主要风险