【数据准备【】:银河金融数据库(yinhedata.com)
拥有大量外盘期货高频数据,门槛低,质量好,适合大部分投资者量化回测。
【策略流程】
一、明确回测目的
在进行回测之前,首先需要明确回测的目的,这可能是:
- 验证策略的有效性:检查策略在历史数据上的表现是否符合预期。
- 优化策略参数:通过调整策略参数,提高策略的性能。
- 风险评估:评估策略在不同市场环境下的风险和收益。
二、数据准备
1. 数据源选择
从银河金融数据获取历史行情高频数据,然后从中
选择高质量、可靠的数据源是回测的基础。数据源应满足以下条件:
- 完整性:包含所有需要的历史数据,无缺失值。
- 准确性:数据准确无误,无异常值。
- 时效性:数据更新及时,反映最新的市场情况。
2. 数据处理
- 数据清洗:去除无效、错误和重复的数据。
- 数据规整:统一数据格式,如日期时间格式、价格单位等。
- 数据整合:将不同来源的数据合并为一个统一的数据集。
3. 数据验证
- 检查数据范围:确保数据覆盖了策略所需的全部时间段。
- 检查数据连续性:确保数据没有中断,时间序列连续。
- 检查数据一致性:确保数据在时间戳、价格等方面的一致性。
三、策略定义
1. 策略逻辑
明确策略的交易逻辑,包括:
- 买入/卖出信号的产生条件。
- 止损/止盈的设置。
- 仓位管理规则。
2. 策略参数
定义策略中的可调参数,如:
- 技术指标参数(如移动平均线周期、波动率阈值等)。
- 交易信号阈值(如价格变动百分比、成交量变化等)。
四、回测框架搭建
1. 回测环境
- 选择合适的回测平台或工具。
- 配置回测环境,包括初始资金、交易手续费、滑点等。
2. 策略实现
- 将策略逻辑和参数编码到回测平台中。
- 确保策略能够根据历史数据生成交易信号。
五、执行回测
1. 参数优化
- 使用优化算法(如网格搜索、遗传算法等)寻找最优策略参数。
- 注意避免过拟合,确保策略在未来市场中的泛化能力。
2. 回测运行
- 运行回测,让策略在历史数据上进行模拟交易。
- 记录每次交易的详细信息,如开仓时间、平仓时间、盈亏等。