本篇综述聚焦于空间多组学技术在解析心血管疾病复杂性方面的新进展。空间多组学研究允许对组织中的细胞进行多重数据类型的联合分析,包括转录组、表观基因组、蛋白质组和代谢组等。在低分辨率和高分辨率的空间多组学方法中,已经能在亚细胞水平上解析多达10,000个独立分子。这些技术的应用为研究者提供了有关心血管疾病分子机制的新见解。文章还讨论了当前数据分析方法的进展,特别是多组学数据集的数据整合,指出了各种计算流程的优势和不足。这些工具在分析和解释空间多组学数据集中发挥着重要作用,为新发现的揭示以及促进转化心血管研究提供支持。尽管面临诸多挑战,如实验设置的标准化需求、数据分析以及计算工具的改进,空间多组学的应用在理解人类疾病过程和识别新型生物标志物及治疗靶点上具有巨大潜力。这为个性化心血管疾病治疗的进步开辟了新的契机。
背景部分指出,研究器官由万亿细胞和多种细胞类型构成,器官功能依赖于组织微环境中内在和外在刺激的控制。在疾病状态下,这种组织的空间结构可能会被打破,例如心肌梗死后心肌损伤区域的分区。以空间转录组学和空间蛋白质组学为代表的新技术,能够在细胞原位环境中揭示复杂的模式和细胞通讯,助于解码心血管疾病下的空间分子变化。
近年来,单细胞和空间多组学研究提出了有关心脏和肾脏的新见解,极大地拓展了我们对细胞异质性、分化轨迹以及可塑性的理解。文章提及多项技术的重大进展,如数字空间测序、抗体标记的蛋白质成像,以及用于蛋白质和代谢物解析的质谱技术,这些已有卓越的发展并被广泛应用于心脏和肾脏的研究。尤其是在解析心肌梗死、人类心脏及炎症过程上,空间多图谱技术成果显著。跨学科合作项目,如人类细胞图谱及人类生物分子图谱项目,为人类的全面细胞地图绘制奠定了基础。这些数据和技术让未来心血管疾病的研究以及个性化医疗领域更为广阔。