离子迁移质谱 (IM-MS) 是一种快速的气相分离技术,可根据大小-电荷比和质量-电荷比区分离子。每种生物分子类别在这种比率上有独特的关系,IM-MS 能将复杂生物样品的光谱组织成不同类型生物分子的趋势线。为了实现更精确的识别,IM 到达时间需转换为碰撞截面 (CCS) 值以减少仪器间的变异。然而,不同的 IM 装置对此转换方法不一,尤其是波动迁移(TWIM)设备,其需要校准过程以获得 CCS 值,这个过程如果校准物质与分析物结构不相似,可能产生偏差。在多组学混合物中,需要多种校准物质以获得最精确的 CCS 值。本文开发了一种新的多组学 CCS 校准工具,名为 MOCCal,自动为未知特征分配最准确的 CCS 值。MOCCal 校准每个实验到达时间,使用三种特定类别的校准曲线,通过校准值与趋势线的差异(Ų),选择最佳校准曲线。实验证明,MOCCal 在小分子、脂类和肽类的校准中具有极高精准度。
随着多组学分析的普及,系统级分析提供了大量信息来了解有机体、疾病状态或状况,这带来了采样复杂性增加及数据分析的挑战。IM-MS 通过补充质量-电荷比及保留时间数据增强了特征识别验证的可能。但离子迁移技术存在若干挑战,这需要可靠、全面的分析流程来从中提炼重要信息。开发 MOCCal 这种工具是为了提供高精度的校准,而不预先识别的情况下为多组学特征分配生物分子类别以支持进一步的特征识别分析。它将 CCS 校准及生物分子类特征分配等流程纳入 Python 程序中,使其得以对比紧密校准的 IMCal 和单一功率校准方法展示在小分子、脂类和肽类校准的表现。
实验中,MOCCal 使用提供的多种校准标准生成参数化的校准曲线,处理复杂生物样品例如 NIST SRM1950 的提取物,并总结其在实验准确性和数据校准中显著的优势。