空间转录组学(ST)技术从单细胞水平扩展至空间坐标系统,推动了研究在组织和环境中多细胞组织成分和功能的发展。由于数据量增大,这一领域对分析和解释数据的需求日益增加,包括处理数据增长以确定细胞层面和基因水平的表达,改善数据质量,以及多组学整合分析。但现阶段针对ST技术开发的算法仍处于初期阶段。
ST技术使得细胞定位研究成为可能,但是不同的技术如原位杂交和原位测序存在各自的缺陷。条形码技术以更高分辨率捕获组织样本RNA表达,作为解决这些限制的一种方法。ST数据的增加为数据存储和计算带来了挑战,并提出了开发通用算法的需要。结合空间信息和组织图像的ST特定算法正在开发以解释数据。
ST技术在多个研究领域得到了应用,例如健康组织的稳态与发展,癌症等疾病的免疫微环境。随着这些研究的增加,ST技术的应用范围显著扩大。ST数据是一种全新的数据类型,存储与分析需专用解决方案。不同技术的分辨率和覆盖范围差异显著,须开发能利用空间信息和图像的特定算法。此外,分析ST数据需全面的细胞生物学、生物化学和免疫学知识。
本文综述了围绕ST数据分析的五个关键问题: ST数据的获取与可视化、质量控制、单细胞和组织层次标注、多维空间中ST数据解释、以及空间多组学的前瞻性见解。并总结了广泛使用的相关算法与工具。
概括来说,ST技术带来的大数据计算、可视化、存储等新挑战,需开发新的生物信息学工具和数据库。另外,空间信息的利用、特定分析模块的区分,以及算法开发的未来方向都亟需探索。此综述以当前研究为背景,对数据处理流程、分析模块的区别进行了详细讨论,还展望了ST数据解释的计算方法发展前景。