【IEEE/EI/Scopus检索】2025年3-4月传感器与信息技术、通信、软件、信号处理领域国际学术会议征稿开启!

【IEEE/EI/Scopus检索】2025年3-4月传感器与信息技术、通信、软件、信号处理领域国际学术会议征稿开启!

【IEEE/EI/Scopus检索】2025年3-4月传感器与信息技术、通信、软件、信号处理领域国际学术会议征稿开启!



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注V “学术会议小灵通”或参考学术信息专栏:https://ais.cn/u/EbMjMn


亲爱的硕博生们,学术研究需要前沿视野与创新突破!2025年多个传感器、信息技术领域国际学术会议已开启征稿,快来投稿,与全球学者共话科技未来

🌟2025 年光电科学与智能传感国际学术会议(ICOIS 2025)

  • 🎈2025 International Conference on Optoelectronic Science and Intelligent Sensing
  • 🕙时间:2025 年 3 月 14 - 16 日
  • 📍地点:中国 - 长春
  • ✨亮点:在长春聚焦光电与智能传感,7 日内知投稿结果。
  • 📄检索:EI Compendex、Scopus
  • 👨‍🎓适合人群:光电科学、智能传感方向硕博生,寻求学术交流。
  • 代码实现(基于光电探测器的模拟):
import numpy as np
import matplotlib.pyplot as plt

# 设置输入光功率和输出电流
P_in = np.linspace(0.1, 1.0, 100)  # 输入功率范围 (W)
R = 0.8  # 假设响应度为常数0.8 A/W

I_out = R * P_in  # 输出电流

# 绘制输入功率与输出电流的关系
plt.plot(P_in, I_out)
plt.xlabel('Input Power (W)')
plt.ylabel('Output Current (A)')
plt.title('Photodetector Response')
plt.show()

🌟第五届传感器与信息技术国际学术会议(ICSI 2025)

  • 🎈2025 5th International Conference on Sensors and Information Technology (ICSI 2025)
  • 🕙时间:3 月 21-23 日
  • 📍地点:南京 - 南京天丰大酒店
  • ✨亮点:于南京汇聚前沿,连续 4 年 EI 收录,对学生友好,合作 IEEE 出版社。
  • 📄检索:EI(稳定收录)
  • 👨‍🎓适合人群:传感器与信息技术相关专业硕博生,想展示成果者。
  • 代码实现(基于传感器误差的模拟):
import numpy as np

# 假设真实值与测量值
x_true = 50  # 真实值
x_measured = np.random.normal(loc=50, scale=2, size=1000)  # 测量值,假设误差为2

# 计算误差
error = np.abs(x_measured - x_true) / x_true * 100

# 绘制误差分布
import matplotlib.pyplot as plt
plt.hist(error, bins=50, alpha=0.75, color='blue', edgecolor='black')
plt.xlabel('Error (%)')
plt.ylabel('Frequency')
plt.title('Sensor Measurement Error Distribution')
plt.show()

🌟2025 年信号处理、通信与控制系统国际学术会议

  • 🎈2025 International Conference on Signal Processing, Communication and Control Systems
  • 🕙时间:2025 年 3 月 28 - 30 日
  • 📍地点:中国 - 杭州
  • ✨亮点:于杭州探讨信号处理等前沿,3 - 8 天快速审稿。
  • 📄检索:EI、Scopus
  • 👨‍🎓适合人群:信号处理、通信控制专业硕博生,想快速发表。
  • 代码实现(SNR信噪比计算与噪声影响):
import numpy as np

# 设置信号和噪声功率
P_signal = 1  # 信号功率
P_noise = 0.1  # 噪声功率

# 计算SNR
SNR = 10 * np.log10(P_signal / P_noise)
print("SNR (dB):", SNR)

🌟第二届通信技术与软件工程国际学术会议 (CTSE 2025)

  • 🎈2025 2nd International Conference on Communication Technology and Software Engineering (CTSE 2025)
  • 🕙时间:2025 年 03 月 28 - 30 日
  • 📍地点:中国 - 西安
  • ✨亮点:在西安研讨通信与软件前沿,多权威数据库收录。
  • 📄检索:IEEE Xplore, EI Compendex,Scopus
  • 👨‍🎓适合人群:通信技术、软件工程硕博生,追求高收录。
  • 代码实现(香农公式计算):
def shannon_capacity(B, P, N):
    return B * np.log2(1 + P / N)

# 设置带宽、信号功率和噪声功率
B = 1e6  # 带宽1 MHz
P = 10  # 信号功率10 W
N = 1  # 噪声功率1 W

# 计算信道容量
C = shannon_capacity(B, P, N)
print("Channel Capacity (bits/s):", C)

🌟第五届数字信号与计算机通信国际学术会议(DSCC 2025)

  • 🎈2025 5th International Conference on Digital Signal and Computer Communications
  • 🕙时间:2025 年 04 月 11 - 13 日
  • 📍地点:中国 - 长春
  • ✨亮点:长春见证数字信号与计算机通信研讨,1 周内知录用。
  • 📄检索:EI Compendex,Scopus
  • 👨‍🎓适合人群:数字信号、计算机通信硕博生,期待成果展示。
  • 代码实现(DFT离散傅里叶变换计算):
import numpy as np
import matplotlib.pyplot as plt

# 创建时域信号
N = 512  # 信号长度
x = np.sin(2 * np.pi * 50 * np.linspace(0, 1, N))  # 频率为50Hz的正弦波

# 计算DFT
X = np.fft.fft(x)

# 绘制频域信号
frequencies = np.fft.fftfreq(N, d=1/N)
plt.plot(frequencies[:N//2], np.abs(X)[:N//2])
plt.xlabel('Frequency (Hz)')
plt.ylabel('Magnitude')
plt.title('DFT of the Signal')
plt.show()

🌟第六届 IEEE 人工智能、网络与信息技术国际学术会议(AINIT 2025)

  • 🎈2025 IEEE 6th International Seminar on Artificial Intelligence, Networking and Information Technology
  • 🕙时间:2025 年 4 月 11 - 13 日
  • 📍地点:中国 - 深圳
  • ✨亮点:在深圳聚焦 AI 与网络信息前沿,多数据库收录。
  • 📄检索:IEEE Xplore, EI, Scopus
  • 👨‍🎓适合人群:人工智能、网络信息技术硕博生,渴望交流提升。
  • 代码实现(卷积操作实现):
import numpy as np

# 定义输入信号和卷积核
x = np.array([1, 2, 3, 4, 5])
h = np.array([1, 0, -1])

# 计算卷积
conv_result = np.convolve(x, h, mode='full')

print("Convolution result:", conv_result)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力毕业的小土博^_^

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值