【科研必备】2025年国际学术会议征稿开启!计算机视觉、人工智能、生成式AI、应用数学多个领域,多个城市,总有一场适合你!
【科研必备】2025年国际学术会议征稿开启!计算机视觉、人工智能、生成式AI、应用数学多个领域,多个城市,总有一场适合你!
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注V “
学术会议小灵通
”或参考学术信息专栏:https://ais.cn/u/EbMjMn
亲爱的硕博生们,2025年一系列高水平的国际学术会议即将在中国多个城市举办,涵盖计算机视觉、人工智能、生成式AI、应用数学等多个前沿领域。无论你的研究方向是什么,这里都有适合你的舞台!以下是会议详情,快来看看吧!
🎓 2025年人工智能与教育系统国际学术会议(ICAIES 2025)
- 2025 International Conference on Artificial Intelligence and Educational Systems
- 📅 时间:2025年3月14-16日
- 📍 地点:中国·北京
- 📚 收录检索:EI Compendex和Scopus双检索,提升论文国际影响力!
- 💡 亮点:探讨人工智能技术在教育领域的创新应用,推动智能教育系统的发展。投稿后1周内快速反馈,助你高效规划学术日程!
- 🚀适合人群:研究人工智能、教育技术、智能教育系统等领域的学者和学生。
- 代码实现(Q-learning强化学习模型):
import numpy as np
# 定义Q-learning函数
def q_learning(Q, env, alpha=0.1, gamma=0.9, episodes=1000):
for episode in range(episodes):
state = env.reset()
done = False
while not done:
action = np.argmax(Q[state]) # 按最大Q值选择动作
next_state, reward, done, _ = env.step(action) # 执行动作
Q[state, action] += alpha * (reward + gamma * np.max(Q[next_state]) - Q[state, action])
state = next_state
return Q
🎨 2025年生成式人工智能与数字媒体国际学术会议(GADM 2025)
- 2025 International Conference on Generative Artificial Intelligence and Digital Media
- 📅 时间:2025年3月14-17日
- 📍 地点:中国·大理
- 📚 收录检索:EI Compendex和Scopus双检索,确保论文的国际可见度!
- 💡 亮点:深入探讨生成式AI与数字媒体的前沿趋势!
- 🚀适合人群:从事生成式AI、数字媒体、创意计算等相关研究的学者和学生。
- 代码实现(GAN模型的基本实现):
import torch
import torch.nn as nn
import torch.optim as optim
# 定义生成器和判别器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc = nn.Sequential(
nn.Linear(100, 256),
nn.ReLU(),
nn.Linear(256, 512),
nn.ReLU(),
nn.Linear(512, 784),
nn.Tanh()
)
def forward(self, z):
return self.fc(z)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.fc = nn.Sequential(
nn.Linear(784, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.fc(x)
# 定义训练过程
def train_gan(generator, discriminator, dataloader, epochs=10):
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
criterion = nn.BCELoss()
for epoch in range(epochs):
for data in dataloader:
real_images = data[0] # 获取真实图像
batch_size = real_images.size(0)
# 训练判别器
z = torch.randn(batch_size, 100) # 随机噪声
fake_images = generator(z)
real_labels = torch.ones(batch_size, 1)
fake_labels = torch.zeros(batch_size, 1)
optimizer_D.zero_grad()
outputs = discriminator(real_images)
loss_real = criterion(outputs, real_labels)
outputs = discriminator(fake_images.detach())
loss_fake = criterion(outputs, fake_labels)
loss_D = loss_real + loss_fake
loss_D.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
outputs = discriminator(fake_images)
loss_G = criterion(outputs, real_labels)
loss_G.backward()
optimizer_G.step()
print(f"Epoch {epoch+1}/{epochs}, Loss D: {loss_D.item()}, Loss G: {loss_G.item()}")
⚡2025年电气工程与智能系统国际学术会议(IC2EIS 2025)
- 2025 International Conference on Electrical Engineering and Intelligent Systems
- 📅 时间:2025年3月14-16日
- 📍 地点:中国·河南省郑州市
- 📚 收录检索:SPIE出版,EI Compendex和Scopus双检索,稳定检索!
- 💡 亮点:聚焦电气工程与智能系统的最新研究成果,投稿后3-8天快速反馈,高效省心!
- 🚀适合人群:研究电气工程、智能系统、自动化控制等领域的学者和学生。
- 代码实现(PID控制器):
class PIDController:
def __init__(self, Kp, Ki, Kd):
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self.prev_error = 0
self.integral = 0
def update(self, error, dt):
self.integral += error * dt
derivative = (error - self.prev_error) / dt
output = self.Kp * error + self.Ki * self.integral + self.Kd * derivative
self.prev_error = error
return output
📊 第五届应用数学、建模与智能计算国际学术会议
- 2025 5th International Conference on Applied Mathematics, Modelling and Intelligent Computing(CAMMIC 2025)
- 📅 时间:2025年3月21-23日
- 📍 地点:中国·上海(上海大学宝山校区)
- 📚 收录检索:EI Compendex和Scopus双检索,助力学术成果传播!
- 💡 亮点:聚焦应用数学、建模与智能计算的交叉领域,投稿后1周内快速反馈,高效省心!
- 🚀适合人群:研究应用数学、智能计算、数据建模等领域的学者和学生。
- 代码实现(最小二乘法实现):
import numpy as np
# 定义最小二乘法回归函数
def least_squares(X, y):
return np.linalg.inv(X.T @ X) @ X.T @ y
# 假设设计矩阵X和目标变量y
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.array([1, 2, 2, 3])
# 计算回归系数
beta = least_squares(X, y)
print("Regression Coefficients:", beta)