【机器学习|学习笔记】分类树和回归树(Classification and regression trees)的起源、发展、应用与前景,附代码实现示例。(一)

【机器学习|学习笔记】分类树和回归树(Classification and regression trees)的起源、发展、应用与前景,附代码实现示例。(一)

【机器学习|学习笔记】分类树和回归树(Classification and regression trees)的起源、发展、应用与前景,附代码实现示例。(一)



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/146340044


分类树和回归树(CART:Classification and Regression Trees)的起源、发展、应用和前景

1. 起源

分类树(Classification Trees) 和 回归树(Regression Trees) 是决策树的一种扩展,属于监督学习算法中的一种。它们最早由 Breiman 等人在1986年提出,并在其著作《Classification and Regression Trees》中详细介绍。CART是决策树算法的一种,能够处理分类和回归问题。CART的基本思想是通过二叉树结构对数据进行分割,并在每个叶子节点做出预测

  • 分类树:用于分类任务,即通过树形结构将数据集划分为不同的类别。它通过递归地将数据集分割,直到每个子集都尽可能纯净,即大部分数据属于同一类。
  • 回归树:用于回归任务,即预测连续的目标变量。在回归树中,每个叶子节点表示目标变量的一个预测值(通常是该节点中数据点的平均值)。

CART算法最早应用于大规模的医学、经济学和社会科学数据分析中,至今仍是许多领域中经典的数据挖掘方法。

2. 发展

自从CART算法提出以来,决策树方法得到了广泛的发展和应用。以下是决策树发展中的几个重要阶段:

  • 初期发展CART算法最早的实现主要关注于决策树的构建和优化,使用如基于Gini指数的分类标准以及最小均方误差的回归标准。决策树的划分过程主要是选择特征及其切分点来最大程度地降低数据集的混杂度(在分类树中使用“信息增益”或“Gini不纯度”作为划分标准,在回归树中使用“最小均方误差”)。
  • 剪枝算法CART算法采用的“预剪枝”和“后剪枝”方法,通过控制树的深度来避免过拟合。例如,预剪枝通过设置最小样本分割数、最小叶子节点样本数等条件来控制树的生长,而后剪枝则是先生长出一个完全的树,再通过合并一些节点来减少树的复杂度。
  • 集成方法:随着模型和算法的进步,CART算法成为了集成学习方法的基础,特别是在随机森林(Random Forest)和梯度提升树(Gradient Boosting Trees)等方法中应用广泛。这些方法通过集成多个决策树模型来提高预测准确性和稳定性。
  • 现代发展:近年来,随着数据规模和计算能力的提升,决策树方法在大规模数据集中的应用逐渐成熟。结合深度学习和强化学习,决策树方法也不断进行创新,成为更多复杂机器学习算法的组成部分

3. 应用

CART算法的应用非常广泛,涵盖了多个领域。以下是几种典型应用场景:

  • 医学诊断:CART模型可以用于分析疾病数据,通过分类树判断某人是否患有某种疾病,或者通过回归树预测疾病的进展情况。
  • 金融分析:在金融领域,CART可以用于客户信用评分、风险评估、股市预测等任务。回归树可以用来预测资产价格的变化,而分类树可以帮助银行对客户进行分类。
  • 市场营销:CART可以分析消费者的购买行为,帮助营销人员根据客户的历史数据对目标客户进行分类,从而优化产品推荐和广告投放。
  • 客户关系管理(CRM):通过使用CART分析客户数据,企业可以更好地理解客户需求,优化客户服务策略,预测客户流失率等。
  • 图像分类:决策树也可以用于图像数据的分类任务,特别是在结构化数据的图像问题中表现良好。

4. 前景

CART算法的前景依然广阔,特别是随着大数据和计算能力的提升,CART及其扩展方法将在以下方面发挥重要作用

  • 集成学习:CART的集成变体(如随机森林、XGBoost、LightGBM等)将在越来越多的复杂问题中得到应用,特别是处理大规模数据和高维数据时,集成方法能够提供更高的准确性和鲁棒性。
  • 解释性和透明性:相比深度学习,决策树模型在可解释性方面具有优势,未来在需要模型透明性的应用中,如医学、金融等行业,决策树仍然是一个有吸引力的选择。
  • 自动化机器学习(AutoML):随着AutoML的发展,CART及其变种可能会作为基础算法之一,自动选择和优化参数,以适应不同的数据集和任务。
  • 高效性和实时性:在一些需要快速决策的应用场景(如实时推荐系统、风险监测等),CART模型由于其计算效率较高,可能会继续发挥作用。

下节请参考:【机器学习|学习笔记】分类树和回归树(Classification and regression trees)的起源、发展、应用与前景,附代码实现示例。(二)


欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/146340044

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值