【机器学习|学习笔记】分类树和回归树(Classification and regression trees)的起源、发展、应用与前景,附代码实现示例。(二)

【机器学习|学习笔记】分类树和回归树(Classification and regression trees)的起源、发展、应用与前景,附代码实现示例。(二)

【机器学习|学习笔记】分类树和回归树(Classification and regression trees)的起源、发展、应用与前景,附代码实现示例。(二)



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/146340044


分类树和回归树(CART:Classification and Regression Trees)的起源、发展、应用和前景

5. 代码实现

以下是一个使用 决策树 进行分类和回归任务的Python代码示例,利用 scikit-learn 库实现CART模型。

1. 分类树(CART用于分类)

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建CART分类树模型
clf = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=42)

# 训练模型
clf.fit(X_train, y_train)

# 预测结果
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")

# 可视化决策树
plt.figure(figsize=(12,8))
plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.show()

2. 回归树(CART用于回归)

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error

# 加载波士顿房价数据集
boston = load_boston()
X = boston.data
y = boston.target

# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建CART回归树模型
regressor = DecisionTreeRegressor(criterion='mse', max_depth=5, random_state=42)

# 训练模型
regressor.fit(X_train, y_train)

# 预测结果
y_pred = regressor.predict(X_test)

# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")

6. 代码说明

  • CART分类树:使用 DecisionTreeClassifier 来创建一个分类树,指定 criterion='gini' 来使用 Gini 不纯度作为分类标准max_depth=3 控制树的最大深度。训练模型后,利用测试数据进行预测,并计算分类的准确性
  • CART回归树:使用 DecisionTreeRegressor 来创建一个回归树,指定 criterion='mse' 使用均方误差作为回归标准,max_depth=5 限制树的最大深度。训练后,预测结果并计算均方误差(MSE)来评估模型表现。

总结

  • 分类树和回归树(CART)作为经典的决策树方法,具有广泛的应用前景。它们易于理解和实现,具有良好的可解释性,并且能够处理非线性数据。
  • 随着集成学习方法(如随机森林、梯度提升树)的发展,CART方法在大数据时代依然能够发挥其重要作用。

欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/146340044

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值