【机器学习|学习笔记】分类树和回归树(Classification and regression trees)的起源、发展、应用与前景,附代码实现示例。(二)
【机器学习|学习笔记】分类树和回归树(Classification and regression trees)的起源、发展、应用与前景,附代码实现示例。(二)
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/146340044
分类树和回归树(CART:Classification and Regression Trees)的起源、发展、应用和前景
5. 代码实现
以下是一个使用 决策树 进行分类和回归任务的Python代码示例,利用 scikit-learn
库实现CART模型。
1. 分类树(CART用于分类)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建CART分类树模型
clf = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=42)
# 训练模型
clf.fit(X_train, y_train)
# 预测结果
y_pred = clf.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")
# 可视化决策树
plt.figure(figsize=(12,8))
plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.show()
2. 回归树(CART用于回归)
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
# 加载波士顿房价数据集
boston = load_boston()
X = boston.data
y = boston.target
# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建CART回归树模型
regressor = DecisionTreeRegressor(criterion='mse', max_depth=5, random_state=42)
# 训练模型
regressor.fit(X_train, y_train)
# 预测结果
y_pred = regressor.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")
6. 代码说明
- CART分类树:使用
DecisionTreeClassifier
来创建一个分类树,指定criterion='gini'
来使用 Gini 不纯度作为分类标准,max_depth=3
控制树的最大深度。训练模型后,利用测试数据进行预测,并计算分类的准确性。 - CART回归树:使用
DecisionTreeRegressor
来创建一个回归树,指定criterion='mse'
使用均方误差作为回归标准,max_depth=5
限制树的最大深度。训练后,预测结果并计算均方误差(MSE)来评估模型表现。
总结
- 分类树和回归树(CART)作为经典的决策树方法,具有广泛的应用前景。它们易于理解和实现,具有良好的可解释性,并且能够处理非线性数据。
- 随着集成学习方法(如随机森林、梯度提升树)的发展,CART方法在大数据时代依然能够发挥其重要作用。
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/146340044