【学术研讨会】2025年6月-数智融合:统计经济×数据网络×机电交通×材料智造的国际前沿算法实践
【学术研讨会】2025年6月-数智融合:统计经济×数据网络×机电交通×材料智造的国际前沿算法实践
文章目录
第四届数理统计与经济分析国际会议(MSEA 2025)
- 2024 4th International Conference on Mathematical Statistics and Economic Analysis
- 📅 时间地点: 2025年6.6-8| 中国·大连
- 🌐 官网: MSEA 2025
- ✨ 亮点: 投稿一周内极速反馈!
- 🔍 检索: EI Compendex、Scopus
- 👥 适合人群: 数理统计、经济建模、数据分析领域的硕博生,期待您的量化研究成果!
- 算法示例:贝叶斯结构时间序列(BSTS)模型
# 使用Prophet库实现贝叶斯结构时间序列(经济周期分析)
from fbprophet import Prophet
import pandas as pd
# 示例数据:模拟GDP增长率(时间序列)
dates = pd.date_range(start='2010-01-01', periods=120, freq='M')
gdp = [2.5 + 0.1 * i + 3 * np.sin(i/12 * 2*np.pi) + np.random.normal(0, 0.5) for i in range(120)]
df = pd.DataFrame({'ds': dates, 'y': gdp})
# 拟合贝叶斯结构模型(包含周期性和趋势项)
model = Prophet(interval_width=0.95, yearly_seasonality=True)
model.fit(df)
future = model.make_future_dataframe(periods=12, freq='M')
forecast = model.predict(future)
model.plot(forecast)
第七代数据驱动网络国际会议(NGDN 2025)
- 2025 7th International Conference on Next Generation Data-driven Networks
- 📅 时间地点:2025.6.6-8丨中国·沈阳
- 🌐 官网:NGDN 2025
- ✨ 亮点:工业重镇重塑数据网络范式,1周审稿周期助力6G/区块链前沿探索。
- 🔍 检索:EI Compendex/Scopus
- 👥 适合人群:网络架构师、大数据工程师、分布式系统开发者,侧重工业场景应用的科研人才。
- 算法示例:图卷积网络(GCN)用于网络流量异常检测
# 使用PyTorch Geometric实现GCN(网络流量分类)
import torch
from torch_geometric.nn import GCNConv
class GCN(torch.nn.Module):
def __init__(self, num_features, hidden_channels, num_classes):
super().__init__()
self.conv1 = GCNConv(num_features, hidden_channels)
self.conv2 = GCNConv(hidden_channels, num_classes)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index)
return x
# 示例数据:节点特征(流量统计)、边(网络拓扑)
x = torch.randn(100, 10) # 100个节点,10维特征
edge_index = torch.randint(0, 100, (2, 200)) # 随机生成200条边
model = GCN(10, 16, 2) # 输出异常/正常二分类
output = model(x, edge_index)
第十届机电控制与交通运输国际会议(ICECTT 2025)
- 2025 10th International Conference on Electromechanical Control Technology and Transportation
- 📅 时间地点: 2025年6.6-8|中国·桂林
- 🌐 官网:ICECTT 2025
- ✨ 亮点: SPIE出版社护航,投稿后1周快速反馈!
- 🔍 检索: EI Compendex、Scopus
- 👥 适合人群: 机电控制、交通工程、自动化技术领域的硕博生,期待您的工程解决方案!
- 算法示例:强化学习驱动的交通信号控制
# 使用Stable Baselines3实现PPO算法(交通信号优化)
import gym
from stable_baselines3 import PPO
from sumo_rl import SumoEnvironment
# 创建SUMO仿真环境(需安装SUMO和sumo-rl)
env = SumoEnvironment(net_file="network.net.xml",
route_file="routes.rou.xml",
num_seconds=3600)
# 训练强化学习模型
model = PPO("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=10000)
# 测试策略
obs = env.reset()
done = False
while not done:
action, _ = model.predict(obs)
obs, reward, done, info = env.step(action)
第二届材料工程与智能制造国际学术会议(CMEIM 2025)
- 2025 2nd International Conference on Materials Engineering and Intelligent Manufacturing
- 📅时间地点:2025年6.13-15|中国·上海
- 🌐 官网:CMEIM 2025
- ✨亮点:投稿后7个工作日内即可收到接受/拒稿通知
- 🔍 检索:EI Compendex、Scopus收录
- 👥适合人群:材料工程、智能制造及相关领域的研究者和硕博生。
- 算法示例:分子动力学模拟(材料力学性能预测)
# 使用LAMMPS Python接口模拟金属晶体(需安装LAMMPS)
from lammps import lammps
import numpy as np
# 初始化LAMMPS对象
lmp = lammps()
lmp.command("units metal")
lmp.command("atom_style atomic")
lmp.command("boundary p p p")
lmp.command("lattice fcc 3.61")
lmp.command("region box block 0 10 0 10 0 10")
lmp.command("create_box 1 box")
lmp.command("create_atoms 1 box")
# 设置势函数(以铝为例)和力学加载
lmp.command("pair_style eam/alloy")
lmp.command("pair_coeff * * Al_zhou.eam Al")
lmp.command("fix 1 all nvt temp 300.0 300.0 0.1")
lmp.command("run 1000")