【深度学习|学习笔记】从机器学习范式看神经网络能解决什么?(二)
【深度学习|学习笔记】从机器学习范式看神经网络能解决什么?(二)
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “
学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/148877490
前言
- 下面这份“总览 + 代码示例”会把神经网络能解决的问题,放在机器学习的经典范式里系统讲清楚,并给出可直接改造的 PyTorch 小样例。你可以把它当作“问题→方法→实现”的速查表。
5. Python 代码小册(PyTorch 迷你范式)
- 说明:以下示例都尽量精简,展示“问题→网络→损失→指标”的骨架,便于你替换数据集与超参。
5.2 图像分类:极简 CNN
import torch, torch.nn as nn, torch.nn.functional as F
class SmallCNN(nn.Module):
def __init__(self, n_classes=10):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 16, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2),
nn.Conv2d(16, 32, 3, padding=1)

最低0.47元/天 解锁文章
1128

被折叠的 条评论
为什么被折叠?



