预备知识
该文章内容为《动手学习深度学习》的学习笔记
导入包
import torch
数据操作
入门
张量表示一个由数值组成的数组,这个数组可能有多个维度
x = torch.arange(12)
x
对张量的操作
# 查看张量的形状
x.shape
# 查看张量中的元素综合
x.numel()
# 改变一个张量的形状而不改变元素数量和元素值,可以使用`reshape`函数
X = x.reshape(3, 4)
X
创建张量
# 创建一个形状为(2, 3 ,4)的张量,值全为0
torch.zeros((2, 3, 4))
# 如果想要值全为1,可以使用`ones`
# 通过包含数值的Python列表
torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
运算符
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y
torch.exp(x)
使用cat
将多个张量连结到一起
X = torch.arange(12, dtype=torch.float32).reshape(3, 4)
Y = torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim = 0), torch.cat((X, Y), dim = 1)
判断对应位置值是否相等
X == Y
对张量所有元素求和
X.sum()
广播机制
在张量形状不同的情况下,我们可以通过广播机制来执行元素操作
- 通过适当复制元素来扩展一个或两个数组,以便在转换后,两个张量具有相同的形状
- 对生成的数组执行按元素操作
a = torch.arange(3).reshape(3, 1)
b = torch.arange(2).reshape(1, 2)
a + b
索引和切片
# 访问最后一个元素
X[-1]
# 访问第二个和第三个元素
X[1:3]
# 通过指定索引将元素写入矩阵
X[1, 2] = 9
X
# 将多个元素赋值相同的值
X[0:2, :] = 12
X
节省内存
一些操作,比如Y = X + Y
我们会为结果分配新的内存,然后使Y指向内存中的这位置
before = id(Y)
Y = Y + X
id(Y) == before
我们可以使用切片表示法将操作的结果分配给现钱分配的数组
print("正常操作:")
Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z = X + Y
print('id(Z):', id(Z))
print("使用切片")
Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))
如果在后续计算中没有重复使用X,我们也可以用
X[:] = X + Y
或X += Y
数据预处理
读取数据集
首先我们先创建一个人工数据集,并存储在CSV文件中
import os
# 创建保存数据的目录
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
# 写入CSV文件
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Price\n') # 列名
f.write('NA,Pave,127500\n') # 每行表示一个数据样本
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')
接下来我们读取CSV文件
import pandas as pd
data = pd.read_csv(data_file)
print(data)
处理缺失值
典型的方法包括插值法和删除法。插值法:用一个代替值弥补缺失值。删除法:直接忽略缺失值
这里我们使用插值法,将data分成两部分
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs
这里对于第一列用均值替换NaN项
inputs.iloc[:, 0] = inputs.iloc[:, 0].fillna(inputs.iloc[:, 0].mean())
inputs
对于Alley这一列只有两种值Pave和NaN,所以Pandas可以自动将此列转换为两列Alley_Pave和Alley_nan
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
转换为张量格式
现在inputs和outputs中的所有条目都是数值类型,它们可以转换为张量格式
X = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
X, y
线性代数
标量
x = torch.tensor(3.0)
y = torch.tensor(2.0)
x + y, x * y, x/y, x ** y
向量
x = torch.arange(4)
# 索引
x[3]
# 长度
len(x)
# 维度和形状
x.shape
矩阵
A = torch.arange(20).reshape(5, 4)
# 转置
A.T
张量
张量是描述具有任意数量轴的n维数组的通用方法
X = torch.arange(24).reshape(2, 3, 4)
张量的算法,是对两个张量对应的元素实行运算
A = torch.arange(20, dtype = torch.float32).reshape(5, 4)
B = A.clone()
A, A + B, A * B
与标量的运算,就是张量中的每一个数都与该标量进行运算
a = 2
a + X, a * X
降维
x = torch.arange(4, dtype=torch.float32)
x, x.sum()
调用求和函数会沿所有轴降低张量的维度,使它变成一个标量
我们还可以指定轴来降低维度
A.sum(axis = 0)
非降维求和
A.sum(axis = 1, keepdims = True)
点积
y = torch.ones(4, dtype=torch.float32)
x, y, torch.dot(x, y)
向量积
A, x, torch.mv(A, x)
矩阵-矩阵乘法
B = torch.ones(4, 3)
A, B, torch.mm(A, B)
范数
向量范数是将向量映射到标量的函数f。非正式的说,向量的范数是表示一个向量到底有多大
计算L2范数,L2范数是向量元素平方和的平方根
u = torch.tensor([3.0, -4.0])
torch.norm(u)
计算L1范数,L1范数是绝对值的和
torch.abs(u).sum()