Pandas学习笔记(六)

处理文本数据

该文章内容为《Pandas数据分析实战》的学习笔记

导入需要的包和数据

import pandas as pd
inspections = pd.read_csv("pandas-in-action-master/chapter_06_working_with_text_data/chicago_food_inspections.csv")
inspections.head()

字母的大小写和空格

我们可以观察到Name列存在两个问题:一个是大小写不一致,一个是值的前后包含空格

Series对象的str属性公开了一个StringMethods对象,这是一个用于处理字符串的强大工具,我们可以用该对象来处理字符串。

处理空格

我们可以使用strip系列方法删除字符串中的空格

lstrip方法删除字符串开头的空格

dessert = " cheesecake "
dessert.lstrip()

rstrip方法删除字符串末尾的空格

dessert.rstrip()

strip方法删除字符串两端的空格

dessert.strip()

接下来我们来处理数据

inspections["Name"] = inspections["Name"].str.strip()

这种方法只适合与列数较少的DataFrame,对于列数较多的DataFrame我们可以用循环来迭代

for column in inspections.columns:
    inspections[column] = inspections[column].str.strip()
处理大小写

lower方法将所有字符串中的字母转换为小写

inspections["Name"].str.lower()

upper则是转换为大写

还可以使用str.capitalize方法将Series中的每个字符串的首字母大写

inspections["Name"].str.capitalize()

str.title将每个单词的第一个字母大写

inspections["Name"].str.title()
inspections["Name"] = inspections["Name"].str.title() # 存储

字符串切片

接下来我们要对风险类型这一列进行处理,假设我们要提取数字形式的风险类型,看似很简单。但总是存在各种出错的可能,比如:是否所有列都是一样的格式。我们可以通过调用unique方法来找出答案

inspections["Risk"].unique()

我们可以看到这里还有其他格式的数据,这里我们要对All和nan进行处理。这里我们将All值替换为"Risk 4(Extreme)",删除NaN值

inspections = inspections.replace(to_replace="All", value = "Risk 4(Extreme)")
inspections = inspections.dropna(subset=["Risk"])
inspections["Risk"].unique()

字符串切片和字符替换

str.slice方法可以用来按索引位置从字符串中提取子字符串。该方法接受其实索引和结束索引作为参数。下限(起点)是包含在内的,而上限(结束点)是不包含在内的

inspections["Risk"].str.slice(5, 6).head()

还可以使用Python的切片语法替换slice方法

inspections["Risk"].str[5:6].head()

如果想要提取风险级别

inspections["Risk"].str.slice(8, -1).head()

也可以用正则表达式来进行更加复杂的限制,这个我们在后面会介绍

布尔型方法

contains方法检查每个Series值中是否包含字符串。当Pandas在字符串中找到方法所设定的参数时,该方法返回True,反之返回False。但是这就有一个问题,就是区分大小写,这个匹配过程是严格的大小写区分的,所以我们需要先使用lower方法全部转换为小写

has_pizza = inspections["Name"].str.lower().str.contains("pizza")
inspections[has_pizza]

使用str.startswith可以特殊性的查找开头

start_with_tacos = (inspections["Name"].str.lower().str.startswith("tacos"))
inspections[start_with_tacos]

使用str.endswith方法可以特殊性的查找末尾

ends_with_tacos = (inspections["Name"].str.lower().str.endswith("tacos"))
inspections[ends_with_tacos]

拆分字符串

customers = pd.read_csv("pandas-in-action-master/chapter_06_working_with_text_data/customers.csv")
customers.head()

现在我们要将顾客的姓名拆分为名和姓,这里我们可以使用str.split方法,使用指定的分隔符来拆分字符串。该方法返回一个列表,该列表由拆分后的所有子字符串组成。

customers["Name"].str.split(" ").head()

通过查看每个列表的长度,我们可以看到有的被拆分成了多个部分。

customers["Name"].str.split(" ").str.len().head()

这里我们设置一个拆分数量的最大阈值1,这网Pandas只会在第一个空格出拆分字符串。str.get可以根据每行的索引位置从列表中提取值,例如可以定位索引位置0,从而提取每个列表的第一个元素

customers["Name"].str.split(pat = " ", n = 1).str.get(0)

同时我们还可以将expand参数设定为True,这样该方法会返回一个新的DateFrame

customers[["First Name", "Last Name"]] = customers["Name"].str.split(pat = " ", n = 1, expand = True)
customers.head()

接下来删除原始的Name列

customers = customers.drop(labels = ["Name"], axis = "columns")
customers.head()

代码挑战

customers 数据集包括一个 Address 列,该列中的每个地址由街道、城市、州和邮政编码组成。

本节的挑战是将 Address 列中的这 4 个值拆开,将它们分配给新的 StreetCityStateZip 列,然后删除 Address 列。首先自己尝试解决这个问题,然后再查看解决方案。

解决方案
customers.head()
customers[["Street", "City", "Strate", "Zip"]] = customers["Address"].str.split(pat = ",", expand = True)
customers.head()
customers = customers.drop(labels = ["Address"], axis = "columns")
customers.head()

关注公众号小辛到处学,发送1,获取文中的数据资源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值