可视化
该文章内容为《Pandas数据分析实战》的学习笔记
安装Matplotlib
pip install matplotlib
折线图
导入包和数据
import pandas as pd
import matplotlib.pyplot as plt
space = pd.read_csv("./pandas-in-action-master//chapter_14_visualization/space_missions.csv", parse_dates=["Date"], index_col="Date")
space
查看近两年的飞行成本
space["Cost"].head()
space["Cost"].plot()
plot
方法接受一个y参数来告诉Matplotlib应该将哪个列绘制在x轴。还可以使用colormaps参数来设定可视化的颜色,可以是使用下面代码查看colormaps参数的有效输入列表
print(plt.colormaps())
space["Cost"].plot(colormap = "summer")
条形图
通过plot
方法的kind参数可以指定绘制的图形类型,下面我们用它来可视化每个公司赞助的太空飞行次数
space["Company Name"].value_counts().plot(kind = "bar")
上面这种展示方式标签不便于阅读,我们可以使用barh
方法来绘制水平条形图
space["Company Name"].value_counts().plot(kind = "barh")
饼图
图是另一种可视化数据的方式,下面我们使用pie
方法来绘制饼图,比较成功任务与失败任务的比例
space["Status"].value_counts().plot(kind = "pie", legend = True)
legend参数可以让我们在图表中显示图例
关注公众号小辛到处学,发送1,获取文中的数据资源