Pandas学习笔记(十一)

可视化

该文章内容为《Pandas数据分析实战》的学习笔记

安装Matplotlib

pip install matplotlib

折线图

导入包和数据

import pandas as pd
import matplotlib.pyplot as plt
space = pd.read_csv("./pandas-in-action-master//chapter_14_visualization/space_missions.csv", parse_dates=["Date"], index_col="Date")
space

查看近两年的飞行成本

space["Cost"].head()
space["Cost"].plot()

plot方法接受一个y参数来告诉Matplotlib应该将哪个列绘制在x轴。还可以使用colormaps参数来设定可视化的颜色,可以是使用下面代码查看colormaps参数的有效输入列表

print(plt.colormaps())
space["Cost"].plot(colormap = "summer")

条形图

通过plot方法的kind参数可以指定绘制的图形类型,下面我们用它来可视化每个公司赞助的太空飞行次数

space["Company Name"].value_counts().plot(kind = "bar")

上面这种展示方式标签不便于阅读,我们可以使用barh方法来绘制水平条形图

space["Company Name"].value_counts().plot(kind = "barh")

饼图

图是另一种可视化数据的方式,下面我们使用pie方法来绘制饼图,比较成功任务与失败任务的比例

space["Status"].value_counts().plot(kind = "pie", legend = True)

legend参数可以让我们在图表中显示图例


关注公众号小辛到处学,发送1,获取文中的数据资源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值