图论
岛屿数量
https://leetcode.cn/problems/number-of-islands/
核心思路
遇到一次"1",就把这个岛上的"1"全改为"0"
示例代码
class Solution {
public int numIslands(char[][] grid) {
int cnt = 0;
for(int i = 0;i < grid.length;i++){
for(int j = 0;j<grid[0].length;j++){
if(grid[i][j] == '1'){
dfs(grid,i,j);
cnt++;
}
}
}
return cnt;
}
void dfs(char grid[][], int i, int j){
if(i < 0 || j < 0 || i >= grid.length || j >= grid[0].length || grid[i][j] == '0') return;
grid[i][j] = '0';
dfs(grid, i + 1, j);
dfs(grid, i, j + 1);
dfs(grid, i - 1, j);
dfs(grid, i, j - 1);
}
}
腐烂的橘子
https://leetcode.cn/problems/rotting-oranges/
每分钟,腐烂的橘子 周围 4 个方向上相邻 的新鲜橘子都会腐烂。
核心思路
使用了广度优先搜索(BFS)的思想。它首先统计了网格中的新鲜橘子数量,并将所有初始腐烂橘子的位置加入队列。然后,算法通过模拟每分钟腐烂橘子的扩散过程,不断从队列中取出腐烂橘子,检查其相邻位置是否有新鲜橘子。如果有,就将这些新鲜橘子标记为腐烂,并将它们的位置加入队列。这个过程一直持续到没有新鲜橘子剩余或者队列为空(即没有更多的橘子可以腐烂)。最后,如果还有新鲜橘子剩余,说明不是所有橘子都能腐烂,返回 -1;否则,返回使所有橘子腐烂所需的时间(分钟)。
示例代码
class Solution {
// 定义四个方向:上、下、左、右
private static final int[][] DIRECTIONS = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public int orangesRotting(int[][] grid) {
int n = grid.length; // 网格的行数
int m = grid[0].length; // 网格的列数
int fresh = 0; // 用于统计新鲜橘子的数量
List<int[]> q = new ArrayList<>(); // 使用队列存储初始的腐烂橘子的位置
// 遍历整个网格,统计新鲜橘子数量,并将腐烂橘子的位置加入队列
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) {
fresh++; // 如果当前位置是新鲜橘子,则增加新鲜橘子计数
} else if (grid[i][j] == 2) {
q.add(new int[]{i, j}); // 如果当前位置是腐烂橘子,则加入队列
}
}
}
int ans = 0; // 记录经过的时间(分钟)
// 当还有新鲜橘子且队列不为空时,继续循环
while (fresh > 0 && !q.isEmpty()) {
ans++; // 每遍历一轮,表示经过了一分钟
List<int[]> tmp = q; // 使用临时变量保存当前队列状态,以便在遍历时不修改队列本身
q = new ArrayList<>(); // 重新初始化队列,用于存储下一分钟腐烂的橘子位置
// 遍历当前队列中的所有腐烂橘子位置
for (int[] pos : tmp) {
for (int[] d : DIRECTIONS) { // 遍历四个方向
int i = pos[0] + d[0]; // 计算新位置的行索引
int j = pos[1] + d[1]; // 计算新位置的列索引
// 检查新位置是否在网格内,且该位置是新鲜橘子
if (0 <= i && i < n && 0 <= j && j < m && grid[i][j] == 1) {
fresh--; // 减少新鲜橘子计数
grid[i][j] = 2; // 将新鲜橘子标记为腐烂
q.add(new int[]{i, j}); // 将新腐烂的橘子位置加入队列
}
}
}
}
// 如果还有剩余的新鲜橘子,则返回-1;否则返回经过的时间(分钟)
return fresh > 0 ? -1 : ans;
}
}
课程表
https://leetcode.cn/problems/course-schedule/
核心思路
-
图的表示:
a. 使用邻接表(adjacency)表示课程之间的依赖关系。
b. prerequisites 中的每个关系 [a, b] 表示课程 a 依赖于课程 b,在图中表现为一条从 b 到 a 的有向边。 -
DFS 检测环:
a. 用 flags 数组记录每个课程的访问状态:
0:未访问。
1:正在访问(表示当前节点在递归栈中)。
-1:已访问(表示当前节点的所有后续节点都已检查完毕,无需再次访问)。
b. 如果在 DFS 的过程中遇到一个节点正在访问(flags[i] == 1),说明存在环。
c. 如果遍历完所有后续节点后没有发现环,将当前节点标记为已访问(flags[i] == -1)。
示例代码
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
// 创建一个邻接表来表示课程之间的依赖关系
List<List<Integer>> adjacency = new ArrayList<>();
// 初始化邻接表,每个课程对应一个列表
for(int i = 0; i < numCourses; i++)
adjacency.add(new ArrayList<>());
// 用来标记每个课程的访问状态,0:未访问,1:正在访问(当前栈中),-1:已访问
int[] flags = new int[numCourses];
// 根据前置依赖关系构建有向图的邻接表
for(int[] cp : prerequisites)
adjacency.get(cp[1]).add(cp[0]); // cp[1] -> cp[0] 表示修 cp[0] 前必须先修 cp[1]
// 遍历所有课程,检查每个课程是否成环
for(int i = 0; i < numCourses; i++)
// 如果从当前课程出发检测到环,则课程安排无法完成
if(!dfs(adjacency, flags, i)) return false;
// 如果没有环,则可以完成所有课程
return true;
}
private boolean dfs(List<List<Integer>> adjacency, int[] flags, int i) {
// 如果当前课程状态为 1,表示正在访问(在递归栈中),说明存在环
if(flags[i] == 1) return false;
// 如果当前课程状态为 -1,表示已经访问过,无需重复检查,直接返回 true
if(flags[i] == -1) return true;
// 标记当前课程为正在访问
flags[i] = 1;
// 遍历当前课程的所有后续课程(邻接点)
for(Integer j : adjacency.get(i))
// 如果后续课程检测到环,则当前课程也无法完成,返回 false
if(!dfs(adjacency, flags, j)) return false;
// 标记当前课程为已访问
flags[i] = -1;
// 如果没有环,返回 true
return true;
}
}
实现 Trie (前缀树)
核心思路
前缀树的常规实现
示例代码
class Node {
Node[] son = new Node[26];
boolean end;
}
class Trie {
private Node root;
public Trie() {
root = new Node();
}
public void insert(String word) {
Node cur = root;
for (char c : word.toCharArray()) {
c -= 'a';
if (cur.son[c] == null) {
cur.son[c] = new Node();
}
cur = cur.son[c];
}
cur.end = true;
}
public boolean search(String word) {
return find(word) == 2;
}
public boolean startsWith(String prefix) {
return find(prefix) != 0;
}
private int find(String word) {
Node cur = root;
for (char c : word.toCharArray()) {
c -= 'a';
if (cur.son[c] == null) {
return 0;
}
cur = cur.son[c];
}
return cur.end ? 2 : 1;
}
}