1143.最长公共子序列
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)] 易错,注意text2和text1的顺序
for i in range(1, len(text1) + 1): 从1更新到len(text1)
for j in range(1, len(text2) + 1):
if text1[i - 1] == text2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]) 记录上或左一个的最大值
return dp[len(text1)][len(text2)]
1035.不相交的线
class Solution:
def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
for i in range(1, len(nums1) + 1):
for j in range(1, len(nums2) + 1):
if nums1[i - 1] == nums2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j])
return dp[len(nums1)][len(nums2)]
【思考】1. 这两题完全相同,与上一章[718] 最长重复子数组稍有不同,要两个数组重复部分可以不连续。dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]) 这句就保证了,即使不连续,也能记录下左边一格或上边一格的最大值,记录后便不需要用result去随时更新了。
2. 同时,仍然要用 for i in range(1, len(nums1) + 1): 从1更新到len(nums),算dp[i][j] = dp[i - 1][j - 1] + 1。
53. 最大子序和
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
dp = [0] * len(nums)
dp[0] = nums[0]
result = nums[0]
for i in range(1, len(nums)):
dp[i] = max(dp[i - 1] + nums[i], nums[i])
result = max(result, dp[i])
return result
【思考】选当前数+不算当前数的和,以及 当前数 中最大的,比如-1,2 max(-1+2,2)选2。
同时更新result,随时记录选出的最大值。