代码随想录|Day53|动态规划 part14|● 1143.最长公共子序列 ● 1035.不相交的线 ● 53. 最大子序和

1143.最长公共子序列 

class Solution:

    def longestCommonSubsequence(self, text1: str, text2: str) -> int:

        dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)] 易错,注意text2和text1的顺序

        for i in range(1, len(text1) + 1):   从1更新到len(text1)

            for j in range(1, len(text2) + 1):

                if text1[i - 1] == text2[j - 1]:

                    dp[i][j] = dp[i - 1][j - 1] + 1

                else:

                    dp[i][j] = max(dp[i][j - 1], dp[i - 1][j])     记录上或左一个的最大值

        return dp[len(text1)][len(text2)]

 1035.不相交的线

class Solution:

    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:

        dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]

        for i in range(1, len(nums1) + 1):

            for j in range(1, len(nums2) + 1):

                if nums1[i - 1] == nums2[j - 1]:

                    dp[i][j] = dp[i - 1][j - 1] + 1

                else:

                    dp[i][j] = max(dp[i][j - 1], dp[i - 1][j])

        return dp[len(nums1)][len(nums2)]

 【思考】1. 这两题完全相同,与上一章[718] 最长重复子数组稍有不同,要两个数组重复部分可以不连续。dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]) 这句就保证了,即使不连续,也能记录下左边一格或上边一格的最大值,记录后便不需要用result去随时更新了。

2. 同时,仍然要用 for i in range(1, len(nums1) + 1): 从1更新到len(nums),算dp[i][j] = dp[i - 1][j - 1] + 1。

 53. 最大子序和

class Solution:

    def maxSubArray(self, nums: List[int]) -> int:

        dp = [0] * len(nums)

        dp[0] = nums[0]

        result = nums[0]

        for i in range(1, len(nums)):

            dp[i] = max(dp[i - 1] + nums[i], nums[i])

            result = max(result, dp[i])

        return result

  【思考】选当前数+不算当前数的和,以及 当前数 中最大的,比如-1,2 max(-1+2,2)选2。

同时更新result,随时记录选出的最大值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值