【toollearning论文系列6】TOOLLLM: FACILITATING LARGE LANGUAGEMODELS TO MASTER 16000+ REAL-WORLD APIS

TOOLLLM: FACILITATING LARGE LANGUAGE MODELS TO MASTER 16000+ REAL-WORLD APIS

本文针对开源大模型工具使用能力不如闭源大模型(GPT系列)这一问题,先前的研究有三个局限性,1.API有限(不涉及现实世界的 API或仅考虑一小部分多样性较差的 API)2. 情景受限(只考虑单一工具的使用而不考虑串行使用)3. 推理质量低:现有工作采用 CoT 或 ReACT 【ICLR 2023 | ReAct:首次结合Thought和Action提升大模型解决问题的能力-AI.x-AIGC专属社区-51CTO.COM】进行模型推理,无法完全发挥出LLM 的能力,因此无法处理复杂的指令。)对此,引入 ToolLLM。

ToolLLM的贡献主要分两个部分:ToolBench数据集、自动评估器ToolEval。

ToolBench数据集

下图是构建数据集的流程,主要分成三个阶段:收集API、生成指令、路径探索(提出了新算法DFSDT)。

  • API收集

RapidAPI 是 API 市场,开发人员只需注册一个 RapidAPI 密钥,就可以测试和连接各种 API。RapidAPI 中的所有 API 都可以分为 49 个粗粒度的类别(category),例如体育、金融和天气。这些类别将 API 与最相关的主题相关联。此外,该中心还提供 500+ 称为集合(collection)的细粒度分类,例如中文 API 和数据库 API。同一集合中的 API 具有共同的特征,并且通常具有相似的功能或目标。

如图,每个工具可能由多个 A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值